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Abstract: Given a locally compact group G and a continuous representation
ρ of G on a real or complex Banach space V we obtain the corresponding
cohomology groups Hn(G,V, ρ) using a recursive construction adapted from
[1]. As a consequence we prove under certain conditions (equivalent with the
existence of a non-trivial simultaneous fixed point of the associated affine map)
that all cohomology groups vanish.
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1. Introduction

This note concerns an alternative definition of cohomology of groups and their
continuous representations. Here we adopt the following notation: G is a locally
compact second countable group, with (V, ρ) a continuous Banach G-space. We
denote by V G the G-fixed vectors of V , by Id the identity map on V and by
Z(G) the center of G. Also, we will use without distinction the notations
ρ(g)(v), or g · v (g ∈ G and v ∈ V ).

Given a locally compact second countable group G and a continuous k-
linear (k = R or C) representation ρ on a resp. real or complex Banach space
V , the standard definition of group cohomology Hn(G,V ) is due to Hochschild
and Mostow and is found in [3], or Borel and Wallach in [2]. We will use
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the notation of [3]. Here Fn(G,V ) stands for the space of n-cochains, i.e. all
continuous functions from Gn → V . Fn(G,V ) is a G-space under the action of
G by right translation. An important feature of the cohomology of [3] is that
given a short exact sequence of continuous Banach G-spaces,

(0) → W → V → U → (0),

one obtains a long exact sequence of the corresponding cohomology groups,

... → Hn(G,W ) → Hn(G,V ) → Hn(G,U) → Hn+1(G,W ) → ... .

Our objective here is to adapt an idea of Atiyah and Wall [1] to our situation
and give a definition of the cohomology groups which we prove is equivalent to
that of [3] and which has the advantage of being recursive. We will then use
this recursive definition to prove a vanishing theorem which has important
applications (particularly when G is nilpotent).

2. The Recursive Definition of the Cohomology

The recursive definition of the cohomology is as follows:

The 0-dimensional cohomology group of G with coefficients in V is H0(G,V )
= V G. We define H1(G,V ) to be the quotient group Z1/B1, where Z1 is the
space of the crossed homomorphisms (or 1-cocycles)

ϕ : G −→ V : ϕ(gh) = ϕ(g) + gϕ(h),

and B1 consists of those ϕ (or 1-coboundaries) having the form ϕ(g) = g ·v0−v0,
for some v0 in V and all g in G.

To define the higher cohomological groups Hn(G,V ), let

V ′ = {ϕ : G −→ V, ϕ continuous}.

Here V ′ is a k-vector space when equipped with the usual pointwise operations.
It becomes a G-space with G acting on V ′ by

g · ϕ : G −→ V : h 7→ g · ϕ(h).

Now we consider the embedding of G-Banach spaces ε : V →֒ V ′ defined by

v 7→ εv : G −→ V : g 7→ g · v.

The space ε(V ) is a closed subspace of V . In order to see this we recall
the topology on Fn(G,V ) is that of uniform convergence on compacta of Gn,
which implies pointwise convergence. Let ϕ ∈ V ′ be the limit of a sequence
ǫ(vn), where vn is an arbitrary sequence in V . Because of the definition of the
map ǫ fixing a g ∈ G, g · vn converges to ϕ(g) for n sufficiently large. Now
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g · V = V and therefore each g · V is closed in V . Hence ϕ(g) = g · v for
some v ∈ V . Hence we can take the quotient space V ♯ = V/ε(V ), which is
also a Banach space. We now define Hn(G,V ) inductively for n ≥ 2 by setting
Hn(G,V ) = Hn−1(G,V ♯).

In order to show this definition is equivalent to the standard one, we shall
first prove V ′ is acyclic, that is Hn(G,V ′) = (0), for each n > 0.

Lemma 2.1. Hn(G,V ′) = (0), for all n > 0.

Proof. Consider the n-cochain f ∈ Fn(G,V ′). This is a map

f : G × ... × G
︸ ︷︷ ︸

n−times

−→ V ′ .

Since the elements of the space V ′ are themselves maps from G to V , we can
regard f as a map

f : G × ... × G × G
︸ ︷︷ ︸

(n+1)−times

−→ V.

We write

(f(g1, ..., gn))(g0) = f(g0, g1, ..., gn).

Now the coboundary operators,

∂n : Fn(G,V ′) −→ Fn+1(G,V ′)

give us (see [3], or [2])

[(∂nf)(g1, ..., gn+1)](g0) = [(−1)n+1f(g1, ..., gn) + g1f(g2, ..., gn+1)

+

n∑

i=0

(−1)if(g1, ..., gigi+1, ...gn+1)](g0).

Hence

∂nf(g0, ..., gn+1) =
n∑

i=0

(−1)if(g0, g1, ..., gigi+1, ..., gn+1) + (−1)n+1f(g0, ..., gn).

Now, consider the maps

dn : Fn(G,V ′) −→ Fn−1(G,V ′),

defined by

(dnf)(g0, ..., gn−1) = f(1G, g0, ..., gn−1).

Then,

[dn+1(∂nf)](g0, ..., gn) = (∂nf)(1G, g0, ..., gn)

= f(g0, ..., gn) − f(1G, g0g1, ..., gn) + ... + (−1)nf(1G, g0, g1, ..., gn−1gn)
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+ (−1)n+1f(1G, g0, g1, ..., gn−1).

On the other hand,

[∂n−1(dnf)](g0, ..., gn)

= (dnf)(g0g1, ..., gn) + ... + (−1)n−1(dnf)(g0, g1, ..., gn−1gn)

+ (−1)n(dnf)(g0, g1, ..., gn−1) = f(1G, g0g1, ..., gn)

+ ... + (−1)n+1f(1G, g0, g1, ..., gn−1gn) + (−1)nf(1G, g0, g1, ..., gn−1).

Therefore, letting Id stand for IdF n(G,V ′) we get,

[dn+1(∂nf) + ∂n−1(dnf)](g0, ..., gn) = f(g0, ..., gn),

that is,

dn+1∂n + ∂n−1dn = Id.

Hence, if f is a n-cocycle in Zn(G,V ′), the above relation shows that it is
also a n-coboundary, i.e.

∂n−1(dnf) = f.

Therefore,

Hn(G,V ′) = (0), for each n > 0. �

This acyclicity now yields the equivalence of the two definitions of cohomol-
ogy:

Theorem 2.2. Hn(G,V ) ∼= Hn−1(G,V ♯), for all n > 1.

Proof. As we saw V ′ and V ♯ are G-Banach spaces and we have the following
exact sequence:

(0) −→ V −→ V ′ −→ V ♯ −→ (0).

This in turn gives us the long exact sequence,

... −→ Hn−1(G,V ′) −→ Hn−1(G,V ♯) −→ Hn(G,V ) −→ Hn(G,V ′) −→ ... .

Since V ′ is acyclic this long exact sequence gives isomorphisms Hn(G,V ) ∼=
Hn−1(G,V ♯) for all n > 1.

3. An Application

We now give an application of the equivalence of the two definitions of coho-
mology. Consider the continuous linear representation ρ : G −→ GL(V ) and
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let ϕ be a 1-cocycle. Define the affine map,

ρϕ : G −→ Aff(V ) := G ⋉ GL(V ),

given by

ρϕ(g) : V −→ V such that ρϕ(g)(v) := ρ(g)(v) + ϕ(g).

Because of the cocycle identity this map is a homomorphism. Suppose the
affine map ρϕ had a fixed point, that is there is a v0 in V with ρϕ(g)(v0) = v0,
for every g in G. Then ρ(g)(v0) + ϕ(g) = v0 so that ϕ is a coboundary.

The following lemma is left to the reader, where here A ∈ GL(V ) and b ∈ V .

Lemma 3.1. An affine map x 7→ Ax+ b has a fixed point in V if and only

if Id − A is invertible.

Our application of Theorem 2.2 is:

Corollary 3.2. Let G be a locally compact second countable group, and ρ
be a representation of G on a Banach space V without non-trivial fixed points.

If there is a z0 in Z(G) with Id− ρ(z0) invertible, then Hn(G,V ) = (0), n ≥ 0.

Proof. First, H0(G,V ) := V G = (0) because ρ by assumption has no non-
trivial fixed points. Now, let φ : G → V be a 1-cocycle. Consider the affine
map ρφ defined above. Because of the lemma if Id − ρ(z0) is invertible, then
the affine map ρϕ(z0) has a fixed point. Namely, v0 = [Id − ρ(z0)]

−1(φ(z0)).

Now v0 is fixed under each ρφ(g), g ∈ G. This is because z0 ∈ Z(G) and ρϕ

is a homomorphism. Hence ρφ(z0g) = ρφ(gz0) = ρφ(g)(ρφ(z0)) = ρφ(z0)(ρφ(g)).
Therefore, ρφ(g)(ρφ(z0))(v0) = ρφ(g)(v0) = ρφ(z0)(ρφ(g)(v0)). It follows that
ρφ(g)(v0) = ρφ(z0)(ρφ(g)(v0)). In other words, ρφ(g)(v0) is a fixed point of the
map ρφ(z0). Since the unique fixed point of this map is v0, ρφ(g)(v0) = v0 for
each g ∈ G. That is, φ(g) = v0 − ρ(g)(v0), g ∈ G and thus H1(G,V ) = (0).

To see Hn(G,V ) = (0) for n ≥ 2, we use Theorem 2.2, that is, Hn+1(G,V ) =
Hn(G,V ♯). If Id − ρ(z0) is invertible on V , the corresponding representation
on V ′ will satisfy the same condition, as will the associated representation on
V ♯. By the above, H1(G,V ♯) = (0). Therefore, H2(G,V ) = H1(G,V ♯) = (0).
By induction on n we get our conclusion.

The definition of irreducibility is the usual one. A representation ρ is called
irreducible if the only closed ρ-invariant subspace of V is (0), or V itself.

The following important extension of Schur’s Lemma (to arbitrary contin-
uous representations on a Banach space) is proved in Warner, p. 239 of [4].

If ρ is an irreducible representation of a locally compact second countable



314 I. Farmakis

group G on a complex Banach space V , then the algebra of intertwining oper-
ators for ρ consists of only scalar multiples of the identity. Since the center,
Z(G), acts by scalar multiples of the identity, if ρ|Z(G) is non-trivial, Id− ρ(z0)
is invertible for some z0 ∈ Z(G). We therefore have the following corollary of
Theorem 3.2.

Corollary 3.3. Let ρ be an irreducible representation of a locally compact

second countable group on a complex Banach space V with ρ|Z(G) non-trivial,

then Hn(G,V ) = (0) for all n > 0.
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