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1. Introduction

To decide whether or not a function is univalent has traditionally been an inter-
esting and many times hard problem. In line of this the Schwarzian derivative
has been an important object of study much due to Nehari’s Theorem [5] and
Kraus’ Theorem [4], giving one sufficient and one necessary condition for uni-
valence, but leaving a gap between them. The purpose of the present article
is to study these two results more closely with special aim to investigate what
happens when the norm of the Schwarzian derivative is near the special values
of Nehari and Kraus. The discussions are mainly known, but in a new setting
with a number of illustrations to exemplify the theory.
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2. Some Preliminaries

Definition 1. (Univalent Functions) A function f analytic in the unit
disk D = {z : |z| < 1} is said to be univalent in D if it does not take the same
value twice, i.e.

z1 6= z2 ⇒ f(z1) 6= f(z2), z1, z2 ∈ D.

The theory of univalent functions is largely concerned with the family S of
functions f analytic and univalent in D, normalized by the conditions f(0) = 0
and f ′(0) = 1, thus having the form f(z) = z +a2z

2 + · · ·+anzn + · · ·, z ∈ D.
The most known example of a function in S is the Koebe function

k(z) =
z

(1 − z)2

and its rotations. If the image f(D) is starlike with respect to the origin, the
function is called starlike and the class of such functions is denoted S∗.

Definition 2. (The Schwarzian Derivative) Let f be an analytic, locally
univalent function in D. Then the Schwarzian Derivative is defined by

Sf (z) =

[

f ′′(z)

f ′(z)

]′

−
1

2

[

f ′′(z)

f ′(z)

]2

.

The norm of the Schwarzian derivative is defined as

‖Sf‖2
= sup

z∈D

(1 − |z|2)2 |Sf (z)| .

Remark 3. To motivate the study of the Schwarzian derivative, we note
that

— The Schwarzian derivative is important mainly because of its invariance
under linear fractional transformation.

— If f is a linear fractional transformation then ‖Sf‖2
= 1, so in some sense

‖Sf‖2
measures how far away a function is from a linear fractional transforma-

tion.

— Also the pre-Schwarzian derivative defined as the logarithmic derivative
of f ′ has been studied in many papers, see e.g [1], [2], [6].

The norm of the Schwarzian derivative is the key in the following classical
results.

Theorem 4. (Kraus-Nehari) If a function f is univalent in D, then

‖Sf‖2
≤ 6.
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If a function f is analytic in D and

‖Sf‖2
≤ 2,

then f is univalent in D.

Both constants 2 and 6 are the best possible, leaving a gap between them in
which the norm of the Schwarzian derivative is a number between 2 and 6. An-
alytic functions with these norms may be univalent or not, but the Schwarzian
derivative cannot be used to decide this.

We will investigate the border line cases of the norm more closely by asking:

— Which functions in S are such that ‖Sf‖2
= 6?

— Which functions in S are such that ‖Sf‖2
= 2?

Partial answers illustrated by a number of examples will be offered.

3. The Boundary Case ‖Sf‖
2

= 6

In earlier papers an alternative method of frequency analysis has been derived,
see [7], [8]. In this method we construct from observations of a signal, certain
univalent functions called slit mapping functions. It was then natural to start
the investigation by studying the Schwarzian derivative for these slit mapping
functions. They are defined as follows:

Definition 5. (Slit Mapping Functions) Let Sl denote the subfamily of
S∗ consisting of functions of the form

f(z) =
z

I
∏

j=1

(1 − 2z cos ωj + z2)rj

, where

I
∑

j=1

rj = 1.

A function f ∈ Sl maps D onto the complement of 2I radial slits, i.e. f(D)c

consists of 2I radial slits, two of which are on the positive and negative real
axis. f has an analytic extension to the closed unit disk D = {z : |z| ≤ 1}
except for the zeros of the denominator.

We choose one particular mapping (see Figure 1) to illustrate what happens
to the norm of the Schwarzian derivative:

Example 6. (A Slit Mapping Function) Let I = 3 with ω1 = π
6
, ω2 = π

2
,



126 R.J. Rensaa

Figure 1: Slits given by a function in Sl

ω3 = 3π
4

and α1 =
√

3

4
, α2 = 1

2
, α3 = 1

4
. Then

f(eiθ) =
1

2(cos θ −
√

3

2
)

3

8 (cos θ)
1

2 (cos θ +
√

2

2
)

1

8

. (1)

This function maps D onto the complement of the slits given in Figure 1.

When we have derived the Schwarzian derivative of function (1), we sub-
stitute the polar representation z = r(cos θ + i sin θ) into the expression (1 −
|z|2)2Sf (z). Then we choose a proper number of radii; r = 0.01, 0.1, 0.2, ..., 0.9,
0.96 to illustrate the norm of the Schwarzian derivative. The reason for choosing
more than one radius is that the norm is not satisfying the maximum principle.
Maple produces the curves in Figure 2.

The curves indicate that ‖Sf‖2
= 6. Actually, explicit computations show

that lim
r→1

(1 −
∣

∣reiθ
∣

∣

2
)2Sf (reiθ) = −6, so the maximum norm is obtained as r

tends to 1.

From properties of the Koebe function it follows that all slit functions in S
lead to the same result as in the previous example. The simplest example is a
single slit mapping

f(z) =
z(1 + az)

(1 − z)2
; a ∈

{

w :

∣

∣

∣

∣

w +
1

2

∣

∣

∣

∣

=
1

2

}

. (2)

But also other functions have this property, as shown in the following example.

Example 7. (A Polynomial) Let p be the function

p(z) = z +
1

2
z2,
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Figure 2: The norm of the Schwarzian derivative of a slit mapping
function

representing a univalent function with extremal properties for second degree
polynomials: The coefficient 1/2 is the largest value possible if the polynomial
is to be univalent. It maps D onto the interior of a cardioid. The norm of the
Schwarzian derivative of p(z) is obtained from

Sp(z)(1 − |z|2)2 = −
3

2

(1 − |z|2)2

(1 + z)2
. (3)

With the same procedure as in Example 6, the graphs are like in Figure 3. The
figure indicates that the boundary value −6 is obtained as r → 1, which also
can be seen directly from the expression (3).

With these examples at hand it is nearby to ask: What do the functions have
in common that brings them to have this 6-property? What is their common
characteristic? These questions lead to the following result:

Theorem 8. Let f ∈ S, and assume that f is analytic in the point eiα.
Then

lim
r→1

(1 −
∣

∣reiα
∣

∣

2
)2Sf (reiα)

=

{

0 if f ′(eiα) 6= 0,
−6e−2iα if f ′(eiα) = 0 and f ′′(eiα) 6= 0.

(4)
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Figure 3: The norm of the Schwarzian derivative of a polynomial

Proof. The proof is straight forward: Sf (z) may be rewritten as

Sf (z) =
1

(f ′(z))2

[

f ′′′(z)f ′(z) −
3

2
(f ′′(z))2

]

.

We substitute z = reiα to obtain the expression

(1 −
∣

∣reiα
∣

∣

2
)2Sf (reiα) =

(1 − r2)2

(f ′(reiα))2

[

f ′′′(reiα)f ′(reiα) −
3

2
(f ′′(reiα))2

]

.

From this it is obvious that if f ′(eiα) 6= 0, then the limit as r → 1 of (1 −
r2)2Sf (reiα) is 0.

If f ′(eiα) = 0 we get an 0/0-form, and since the limit is radial we use
L’Hopitals rule on the expression to obtain the given result in (4). In this case
we have to use that f ′′(eiα) 6= 0.

It can be proved that f ′ = 0 is necessary for the Schwarzian derivative to
have norm 6.

4. The Boundary Case ‖Sf‖
2

= 2

Nehari’s Theorem says that if we have an analytic function and know that
‖Sf‖2

≤ 2, then the function is univalent. The constant 2 is best possible, and
can not be replaced by any larger number. This is proved by Hille [3] by using
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the function

f(z) =

(

1 − z

1 + z

)α

, α ∈ C,

which is univalent if and only if the exponent α = a+ ib satisfies a2 +b2 ≤ 2 |a| .
We have e.g. that the choice α = ib produces a non-univalent function f with
‖Sf‖2

≤ 2(1 + b2)(1 − |z|2)−2.

We restrict ourselves to investigate functions that we know in advance are
univalent, transform them and ask: Is it possible to find a univalent function
with Schwarzian norm 2 that becomes non-univalent with a small variation
leading to norm greater than 2? We include 2 examples.

Example 9. (A Log Function 1) Let f be the function

f(z) =
1

2c
ln

(

1 + cz

1 − cz

)

, 0 < |c| ≤ 1. (5)

For c = 1 this function maps D onto the horizontal strip between −π/4 and
π/4. The Schwarzian derivative of (5) is given in the expression

Sf (z)(1 − |z|2)2 =
2c2(1 − |z|2)2

(−1 + cz)2(1 + cz)2
.

It is not difficult to show directly that ‖Sf‖2
< 2 when |c| < 1 and ‖Sf‖2

= 2
when |c| = 1.

Example 10. (A Log Function 2) Let f be the function

fc(z) = ln(1 + z) + cz2, c ∈ C.

Because of both logarithmic and non-logarithmic terms, the function involves
lots of discussions with not too nice expressions. The Schwarzian derivative is

Sf (z) = −
1

2

−1 + 12(−c + c2 + 4c2z + 6c2z2 + 4c2z3 + c2z4) − 32cz − 20cz2

(1 + 2cz + 2cz2)2(1 + z)2
.

Let |z| < 1, |w| < 1. Then a necessary and sufficient condition for univalence is

fc ∈ S ⇐⇒ −c /∈ V :=

{

ωv : ωv =
ln(1 + z) − ln(1 + w)

z2 − w2

}

.

A necessary and sufficient condition for local univalence is

f ′
c(z) 6= 0 ⇐⇒ −c /∈ U :=

{

ωu : ωu =
1

2z(1 + z)

}

,

where U ⊆ V . But these results do not give a “picture” of the set that c may
be chosen from in order to give a univalent function. To get such a picture,
we concentrate on the denominator term 1 + 2cz + 2cz2 in Sf (z). Zeros of this

term are z = −1

2
± 1

2

√

1 − 2

c
and if we require ‖Sf‖2

≤ 6 and choose the same
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(a) c = − 1

4
. (b) c = 1

2
.

Figure 4: The norm of the Schwarzian derivative for extremal cases of
a Log function

values of r as in Example 6, exact intervals on the real and imaginary axis may
be given:

c real: It is easy to see that c ∈
[

−1

4
, 1

2

]

⇒ ‖Sf‖2
≤ 6; giving candidates for

univalence. Figures 4(a) and 4(b) illustrate what happens to the norm of the
Schwarzian derivative for the extremal cases c = −1

4
and c = 1

2
.

To be sure that the function is univalent, we require ‖Sf‖2
≤ 2. Numerically

this is the case for values of c approximately in the interval [−0.197, 0.255].

c imaginary: It is easy to see that c ∈
[

−
√

3

6
i,

√
3

6
i
]

=⇒ ‖Sf‖2
≤ 6; giving

candidates for univalence. Figure 5 illustrate what happens in the extremal

case c = −
√

3

6
i. For the positive imaginary axis we obtain a similar result due to

symmetry about the real axis. In this case if we require ‖Sf‖2
≤ 2, numerically

we find that c approximately must be chosen from the interval [−0.228i, 0.228i].

Other values of c: The expressions become more complicated, but may
be solved numerically. The domain of permitted values of c are given by the
innermost domain of Figure 6. When c is chosen in this area, we obtain a
function fc which has the possibility to be univalent (i.e. giving ‖Sf‖2

≤ 6).
The domain of values of c producing functions fc that we know are univalent
by the requirement ‖Sf‖2

≤ 2, is considerably smaller.
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Figure 5: c = −
√

3

6
i

Figure 6: Other values of c

In Figure 6 we have included also another border line. This is obtained as
we know that the derivative of each function has to be different from 0. Not all
of the border line is included, only the part that produce bounds for our values
of c.

Put together we obtain an interesting figure: Outside the outer border are
non-permitted values of c. Inside the border we first meet an area of c-values
for which fc is locally univalent but not univalent. This is except for the two
segments of the imaginary axis. The region is shredded in Figure 6. Inside the
“Schwarzian border” bounding the innermost domain, we have values of c for
which ‖Sf‖2

≤ 6.
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