INTERVAL-VALUED H-FUZZY RELATIONS

Kul Hur1, Wang Ro Lee2

1Division of Mathematics and Informational Statistics
Nanoscale Science and Technology Institute
Wonkwang University
Iksan, Chonbuk, 570-749, KOREA
e-mail: kulhur@wonkwang.ac.kr

2Faculty of Liberal Education
Cheonbuk National University
Jeonju, Cheonbuk, 561-756, KOREA
e-mail: wrlee@jbun.ac.kr

Abstract: We introduce the category \textsc{IVRel}(H) consisting of interval-valued H-fuzzy relational spaces and relation preserving mappings between them and we study structures of the category \textsc{IVRel}(H) in the viewpoint of the topological universe introduced by Nel. Thus we show that \textsc{IVRel}(H) satisfies all the conditions of a topological universe over \textsc{Set} except the terminal separator property and \textsc{IVRel}(H) is Cartesian closed over \textsc{Set}. Furthermore, we study some relations among \textsc{Rel}(H), \textsc{IRel}(H) and \textsc{IVRel}(H).

AMS Subject Classification: 04A72, 18D15, 03F55

Key Words: interval-valued H-fuzzy relation, (co)topological category, Cartesian closed category, topological universe

1. Introduction

Nel [20] introduced the notion of a topological universe which implies a Cartesian closed and a concrete quasitopos [1]. Every topological universe satisfies all the properties of a topos except one condition on the subobject classifier. The notion of a topological universe has already been put to effective use in
several areas of mathematics in [18], [19], [21]. In 1980, Cerruti [5] introduced the category of L-fuzzy relations and investigated some of its properties. After that time, Hur [11] introduced the category $\text{Rel}(H)$ of the fuzzy relational spaces with a complete Heyting algebra H as a codomain and he studied the category $\text{Rel}(H)$ in the sense of a topological universe. Moreover, by using the concept of intuitionistic fuzzy set introduced by Atanassov [2], Hur et al [13] investigated the category $\text{IVRel}(H)$ consisting of intuitionistic H-fuzzy relational spaces and morphisms between them in a topological universe viewpoint.

In this paper, we introduce the category $\text{IVRel}(H)$ of interval-valued H-fuzzy relational spaces and study the category $\text{IVRel}(H)$ in the sense of a topological universe. In particular, we show that $\text{IVRel}(H)$ satisfies all the conditions of a topological universe over Set except the terminal separator property. And $\text{IVRel}(H)$ is shown to be Cartesian closed over Set. Furthermore, we study some relations among $\text{Rel}(H)$, $\text{IRel}(H)$ and $\text{IVRel}(H)$.

2. Preliminaries

In this section, we will introduce some basic definitions and well-known results which are needed in the next sections.

Definition 2.1. (see [9]) Let A be a concrete category and let Γ be a class.

1. A source in A is a pair $(X, (f_\alpha)_\Gamma)$ (simply, (X, f_α) or $(f_\alpha)_\Gamma$), where X is an A-object and $(f_\alpha : X \to X_\alpha)_\Gamma$ is a family of A-morphisms each with domain X. In this case, X is called the domain of the source and the family $(X_\alpha)_\Gamma$ is called the codomain of the source.

2. A source (X, f_α) is called a *mono-source* providing that the f_α can be simultaneously cancelled from the left; i.e., providing that for any pair $Y \xrightarrow{r} X$, of morphisms such that $f_\alpha \circ r = f_\alpha \circ s$ for each $\alpha \in \Gamma$, it follows that $r = s$.

Dual Notions. Sink in A and epi-sink.
Definition 2.2. (see [17]) Let A be a concrete category and let $((Y_\alpha, \xi_\alpha))_\Gamma$ be a family of objects in A indexed by a class Γ. For any set X, let $(f_\alpha : X \to Y_\alpha)_\Gamma$ be a source of mappings indexed by Γ. An A-structure ξ on X is said to be initial with respect to $(X, (f_\alpha), ((Y_\alpha, \xi_\alpha)))$ providing that the following conditions hold:

1. For each $\alpha \in Z$, $f_\alpha : (X, \xi) \to (Y_\alpha, \xi_\alpha)$ is an A-morphism.

2. If (Z, ρ) is an A-object and $g : Z \to X$ is a mapping such that for each $i \in Z$, the mapping $f_\alpha \circ g : (Z, \rho) \to (Y_\alpha, \xi_\alpha)$ is an A-morphism, then $g : (Z, \rho) \to (X, \xi)$ is an A-morphism. In this case, $(f_\alpha : (X, \xi) \to (Y_\alpha, \xi_\alpha))_\Gamma$ is called an initial source in A.

Dual Notions. Final structure and final sink.

Definition 2.3. (see [17]) A concrete category A is said to be topological over Set providing that for each set X, for any family $((Y_\alpha, \xi_\alpha))_\Gamma$ of A-objects, and for any source $(f_\alpha : X \to Y_\alpha)_\Gamma$ of mappings, there exists a unique A-structure ξ on X which is initial with respect to $(X, (f_\alpha), ((Y_\alpha, \xi_\alpha)))$.

Dual Notions. Cotopological category.

Result 2.A. (see [17, Theorem 1.5]) A concrete category A is topological if and only if A is cotopological.

Result 2.B. (see [17, Theorem 1.6]) Let A be a topological category over Set. Then A is complete and cocomplete.

Definition 2.4. (see [8]) A category A is called Cartesian closed providing that the following conditions hold:

1. For any A-objects A and B, there exists a product $A \times B$ in A.

2. Exponential exists in A, i.e., for any A-object A, the functor $A \times - : A \to A$ has a right adjoint, i.e., for any A-object B, there exists an A-object B^A and an A-morphism $e_{A,B} : A \times B^A \to B$ (called the evaluation) such that for any A-object C and any A-morphism $f : A \times C \to B$, there exists a unique A-morphism $\exists ! A \times f : C \to B^A$ such that the diagram

\[
\begin{array}{ccc}
A \times B^A & \xrightarrow{e_{A,B}} & B \\
\downarrow \exists ! A \times f & & \downarrow f \\
A \times C & & \\
\end{array}
\]
commutes.

Definition 2.5. (see [17]) Let A be a concrete category.

1. The A-fibre of a set X is the class of all A-structures on X.

2. A is called **properly fibred over Set** providing that the following conditions hold:

 (i) (**Fibre-smallness**) For each set X, the A-fibre of X is a set.

 (ii) (**Terminal separator property**) For each singleton set X, the A-fibre of X has precisely one element.

 (iii) If ξ and η are A-structures on a set X such that $1_X : (X, \xi) \to (X, \eta)$ and $1_X : (X, \eta) \to (X, \xi)$ are A-morphisms, then $\xi = \eta$.

Definition 2.6. (see [20]) A category A is called a **topological universe over Set** providing that the following conditions hold:

1. A is well-structured over Set, i.e.: (i) A is a concrete category; (ii) A has the fibre-smallness condition; (iii) A has the terminal separator property.

2. A is cotopological over Set.

3. Final episinks in A are preserved by pullbacks, i.e., for any final episink $(g_\lambda : X \to Y)_\Lambda$ and any A-morphism $f : W \to Y$, the family $(e_\lambda : U_\lambda \to W)_\Lambda$, obtained by taking the pullback of f and g_λ for each λ, is again a final episink.

Definition 2.7. (see [22]) A category A is called a **topos** providing that the following conditions hold:

1. There is a terminal object U in A, i.e., for each A-object A, there exists one and only one A-morphism from A to U.

2. A has equalizers i.e., for any A-objects A and B and A-morphisms $A \xrightarrow{f} B$,

 ![Diagram](https://example.com/diagram.png)

 there exist an A-object C and an A-morphism $h : C \to A$ such that:

 (a) $f \circ h = g \circ h$,

 (b) for each A-object C' and A-morphism $h' : C' \to A$ with $f \circ h' = g \circ h'$, there exists a unique A-morphism $\overline{f'} : C' \to C$ such that $h' = h \circ \overline{f'}$, i.e., the diagram
commutes.

(3) \(\mathbf{A} \) is Cartesian closed.

(4) There is a subobject classifier in \(\mathbf{A} \), i.e., there is an \(\mathbf{A} \)-object \(\Omega \) and \(\mathbf{A} \)-morphism \(v : U \rightarrow \Omega \) such that for each \(\mathbf{A} \)-monomorphism \(m : A' \rightarrow A \), there exists a unique \(\mathbf{A} \)-morphism \(\phi_m : A \rightarrow \Omega \) such that the following diagram is a pullback:

\[
\begin{array}{ccc}
A' & \xrightarrow{m} & A \\
\downarrow & & \downarrow v \\
A & \xrightarrow{\phi_m} & \Omega.
\end{array}
\]

Remark 2.8. Let \(\mathbf{A} \) be any category with a subobject classifier. If \(f \) is any bimorphism in \(\mathbf{A} \), then \(f \) is an isomorphism in \(\mathbf{A} \) (cf. [4]).

Definition 2.9. (see [5], [22]) A lattice \(H \) is called a **complete Heyting algebra**, if \(H \) satisfies the following conditions hold:

1. \(H \) is a complete lattice.
2. For any \(a, b \in H \), the set \(\{ x \in H : x \land a \leq b \} \) has a greatest element denoted by \(a \rightarrow b \) (called **pseudo-complement** of \(a \) and \(b \)), i.e., \(x \land a \leq b \) if and only if \(x \leq (a \rightarrow b) \).

In particular, for each \(a \in H \), \(N(a) = a \rightarrow 0 \) is called the **negation** or the **pseudocomplement** of \(a \).

Result 2.C. (see [5, Example 6 on p. 46]) Let \(H \) be a complete Heyting algebra and let \(a, b \in H \). Then:

1. If \(a \leq b \), then \(N(b) \leq N(a) \), i.e., \(N : H \rightarrow H \) is an involutive order reversing operation in \((H, \leq)\).
2. \(a \leq NN(a) \).
3. \(N(a) = NNN(a) \).
4. \(N(a \lor b) = N(a) \land N(b) \) and \(N(a \land b) = N(a) \land N(b) \).
Throughout this paper, we use H as a complete Heyting algebra with the least element 0 and the largest element 1.

3. The Category $\text{IVRel}(H)$

We introduce the category $\text{IVRel}(H)$ consisting of interval-valued H-fuzzy relational spaces and relation preserving mappings between them, and show that it has similar structures as those of $\text{IVRel}(H)$.

Let $D(H)$ be the set of all closed subintervals of H. The elements of $D(H)$ are generally denoted by capital letters M, N, \cdots, and note that $M = [M_L, M_U]$, where M_L and M_U are the lower and the upper end points respectively. Especially, we denote $0 = [0,0], 1 = [1,1]$, and $a = [a,a]$ for every $a \in H$. We also note that

(i) $(\forall M, N \in D(H))(M = N \iff M_L = N_L, M_U = N_U)$.

(ii) $(\forall M, N \in D(H))(M \leq N \iff M_L \leq N_L, M_U \leq N_U)$.

For every $M \in D(H)$, the complement of M, denoted by M^c, is defined by $M^c = N(M) = [N(M_U), N(M_L)]$.

Definition 3.1. Let X be a nonempty set. Then a mapping $A = [A_L, A_U] : X \rightarrow D(H)$ is called an interval-valued H-fuzzy set (in short, IVHFS) in X, where A_L and A_U are H-fuzzy sets in X satisfying $A_L(x) \leq A_U(x)$ for each $x \in X$.

We will denote the set of all IVHFSs in X as $D(H)^X$.

Definition 3.2. Let X be a nonempty set. Then a mapping $R = [R_L, R_U] : X \times X \rightarrow D(H)$ is called an interval-valued H-fuzzy relation (in short, IVHFR) on X, where R_L and R_U are H-fuzzy relations on X satisfying $R_L(x, y) \leq R_U(x, y)$ for each $(x, y) \in X \times X$. The pair (X, R) is called an interval-valued H-fuzzy relational space (in short, IVFRS).

Definition 3.3. Let (X, R_X) and (Y, R_Y) be an IVFRSs. A mapping $f : X \rightarrow Y$ is called a relation preserving mapping if $R^L_X \leq R^L_Y \circ f^2$ and $R^U_X \leq R^U_Y \circ f^2$, where $f^2 = f \times f$.

The following is the immediate result of Definition 3.3.

Proposition 3.4. Let $(X, R_X), (Y, R_Y)$ and (Z, R_Z) be IVFRSs.

(1) The identity mapping $id_X : (X, R_X) \rightarrow (X, R_X)$ is a relation preserving mapping.

(2) If $f : (X, R_X) \rightarrow (Y, R_Y)$ and $g : (Y, R_Y) \rightarrow (Z, R_Z)$ are relation
Then, by the definition of $R \in \text{IVHFR}$, denote by f and be an IVHFR and let f be an IVHFR and let f be a set and let $((X_\alpha, R_\alpha))_\Gamma$ be any family of IVHFRSs and let f be a set and let $((X_\alpha, R_\alpha))_\Gamma$ be any family of IVHFRSs and relation preserving mappings between them. Every IVRel(H)-morphism will be called an IVRel(H)-morphism.

Theorem 3.5. IVRel(H) is topological over Set.

Proof. Let X be any set and let $((X_\alpha, R_\alpha))_\Gamma$ be any family of IVHFRSs indexed by a class Γ. Let $(f_\alpha : X \to X_\alpha)_{\Gamma}$ be any source of mappings. We define the mapping $R = [R^L, R^U] : X \times X \to D(H)$ as follows: For each $(x, y) \in X \times X$,

$$R^L(x, y) = \bigwedge_{\alpha \in \Gamma} R^L_\alpha(f(x), f(y)) \quad \text{and} \quad R^U(x, y) = \bigwedge_{\alpha \in \Gamma} R^U_\alpha(f(x), f(y)).$$

Then, by the definition of R, $R^L \leq R^U$. Thus $(X, R) \in \text{IVRel}(H)$. Moreover, $f_\alpha : (X, R) \to (X_\alpha, R_\alpha)$ is an IVRel(H)-mapping for each $\alpha \in \Gamma$.

For any $(Y, R_Y) \in \text{IVRel}(H)$, let $g : Y \to X$ be any mapping for which $f_\alpha \circ g : (Y, R_Y) \to (X_\alpha, R_\alpha)$ is an IVRel(H)-mapping for each $\alpha \in \Gamma$. Then we can easily check that $g : (Y, R_Y) \to (X, R)$ is an IVRel(H)-mapping. Hence R is the initial structure on X with respect to $(X, (f_\alpha), ((X_\alpha, R_\alpha)))$. This completes the proof. \hfill \Box

Example 3.5. (1) Inverse image of an IVHFR. Let X be a set, let (Y, R_Y) be an IVHFRS and let $f : X \to Y$ be any mapping. Then there exists the initial IVHFR R on X for which $f : (X, R) \to (Y, R_Y)$ is an IVRel(H)-mapping. In this case, R is called the inverse image of R_Y under f. In particular, if $X \subset Y$ and $f : X \to Y$ is the canonical mapping, then (X, R) is called an interval-valued H-fuzzy relational subspace of (Y, R_Y), where $R = [R^L, R^U]$ is the inverse image of R_Y under f. In fact, $R^L = R_Y^L|_{X \times X}$ and $R^U = R_Y^U|_{X \times X}$.

(2) Interval-valued fuzzy product structure. Let $((X_\alpha, R_\alpha))_\Gamma$ be any family of IVHFRSs and let $X = \prod X_\alpha$ be the product set of $(X_\alpha)_\Gamma$. Then there exists the initial IVHFR R on X for which each projection $\pi_\alpha : (X, R) \to (X_\alpha, R_\alpha)$ is an IVRel(H)-mapping. In this case, R is called the product of $(R_\alpha)_\Gamma$ and denoted by $R = \prod R_\alpha$ and $((X_\alpha, R_\alpha))_\Gamma$ is called the interval-valued H-fuzzy product relational space of $((X_\alpha, R_\alpha))_\Gamma$. In fact, $(\text{IR})^L = \bigwedge_{\Gamma} R^L_\alpha \circ \pi^2_\alpha$ and $R^L_\alpha = \bigcap_{\Gamma} R^U_\alpha \circ \pi^2_\alpha$.

In particular, if $H = \{1, 2\}$, then

$$(R_1 \times R_2)^L((x_1, y_1), (x_2, y_2)) = R^L_1(x_1, x_2) \wedge R^L_2(y_1, y_2)$$
and
\[(R_1 \times R_2)^U((x_1, y_1), (x_2, y_2)) = R_1^U(x_1, x_2) \land R_2^U(y_1, y_2)\]
for any
\[(x_1, y_1), (x_2, y_2) \in X_1 \times X_2.\]

Corollary 3.5. \(\text{IVRel}(H)\) is complete and cocomplete. Moreover, by definition, it is easy to show that \(\text{IVRel}(H)\) is well-powered and co-well-powered.

From Result 2.A and Theorem 3.5, it is clear that \(\text{IVRel}(H)\) is cotopological. However, we show directly that \(\text{IVRel}(H)\) is cotopological.

Theorem 3.6. \(\text{IVRel}(H)\) is cotopological over \(\text{Set}\).

Proof. Let \(X\) be any set and let \(((X_\alpha, R_\alpha))_\Gamma\) be any family of IVHFRS indexed by a class \(\Gamma\). Let \((f_\alpha : X_\alpha \to X)_\Gamma\) be any sink of mappings. We define the mapping \(R = [R^L, R^U] : D(H) \to D(H)\) as follows: For each \((x, y) \in X \times X\),
\[R^L(x, y) = \bigvee_{f_\alpha^{-1} \circ f_\alpha^{-1}(x, y)} R^L_\alpha(x_\alpha, y_\alpha)\]
and
\[R^U(x, y) = \bigvee_{f_\alpha^{-1} \circ f_\alpha^{-1}(x, y)} R^U_\alpha(x_\alpha, y_\alpha),\]
where \(f_\alpha^{-1} = f_\alpha^{-1} \times f_\alpha^{-1}\). Then clearly \((X, R) \in \text{IVRel}(H)\). Moreover, \(f_\alpha : (X_\alpha, R_\alpha) \to (X, R)\) is an \(\text{IVRel}(H)\)-mapping for each \(\alpha \in \Gamma\).

For any \((Y, R_Y) \in \text{IVRel}(H)\), let \(g : X \to Y\) be any mapping for which \(g \circ f_\alpha : (X_\alpha, R_\alpha) \to (Y, R_Y)\) is an \(\text{IVRel}(H)\)-mapping for each \(\alpha \in \Gamma\). Then we can easily check that \(g : (X, R) \to (Y, R_Y)\) is an \(\text{IVRel}(H)\)-mapping. Hence \(R\) is the final structure on \(X\) with respect to \(((X_\alpha, R_\alpha)), (f_\alpha), X)\). This completes the proof.

Example 3.6. (1) *Interval-valued H-fuzzy quotient relation.* Let \((X, R) \in \text{IVRel}(H)\), let \(\sim\) be an equivalence relation on \(X\) and let \(\varphi : X \to X/\sim\) be the canonical mapping. Then there exists the final interval-valued H-fuzzy relation \(R_{X/\sim} = [R^L_{X/\sim}, R^U_{X/\sim}]\) on \(X/\sim\) for which \(\varphi : (X, R) \to (X/\sim, R_{X/\sim})\) is an \(\text{IVRel}(H)\)-mapping. In this case, \(R_{X/\sim}\) is called the interval-valued H-fuzzy quotient relation of \(X\) by \(R\).

(2) *Sum of interval-valued H-fuzzy relations.* Let \(((X_\alpha, R_\alpha))_\Gamma\) be a family of IVHFRSs, let \(X\) be the sum of \((X_\alpha)_\Gamma\) and let \(j_\alpha : X_\alpha \to X\) be the canonical (injection) mapping for each \(\alpha \in \Gamma\). Then there exists the final IVHFR \(R\) on \(X\). In fact, for each \(((x_\alpha, \alpha), (y_\beta, \beta)) \in X \times X\), \(R^L((x_\alpha, \alpha), (y_\beta, \beta)) = \bigvee_{\Gamma} \mu_{R_\alpha}(x, y)\) and \(R^U((x_\alpha, \alpha), (y_\beta, \beta)) = \bigvee_{\Gamma} R^U(x, y)\). In this case, \(R\) is called the sum of
(Rα)Γ and (X, R) is called the sum of ((Xα, Rα))Γ.

Theorem 3.7. Final episinks in IVRel(H) are preserved by pullbacks.

Proof. Let (gα : (Xα, Rα) → (Y, RY))Γ be any final episink in IVRel(H) and let f : (W, RW) → (Y, RY) be any IVRel(H)-mapping. For each α ∈ Γ, let Uα = {(w, xα) ∈ W × Xα : f(w) = gα(xα)} and let us define the mapping RUα = [RLUα, RUα : Uα × Uα → D(H)] as follows: For each ((w, xα), (w', xα')) ∈ Uα × Uα,

\[RUα((w, xα), (w', xα')) = RLW(w, w') \land RUα(xα, xα')\]

and

\[RUα((w, xα), (w', xα')) = RUW(w, w') \land RUα(xα, xα')\].

Let eα : Uα → W and pα : Uα → Xα denote the usual projections of Uα. Then clearly (Uα, RUα) ∈ IVRel(H) for each α ∈ Γ. Moreover, eα : (Uα, RUα) → (W, RW) and pα : (Uα, RUα) → (Xα, Rα) are IVRel(H)-mappings for each α ∈ Γ. And the following diagram is a pullback square in IVRel(H):

\[
\begin{array}{ccc}
(Uα, Rα) & \xrightarrow{pα} & (Xα, Rα) \\
\downarrow{eα} & & \downarrow{gα} \\
(W, RW) & \xrightarrow{f} & (Y, RY).
\end{array}
\]

By the process of the proof of Theorem 3.5 in [11], we can see that (eα : (Uα, RUα) → (W, RW))Γ is a final episink in IVRel(H) and RW is the unique final IVHFR on W with respect to (eα)Γ. This completes the proof. □

For any singleton set \{a\}, since the IVHFR R on \{a\} is not unique, the category IVRel(H) is not properly fibred over Set. Hence, by Theorems 3.6 and 3.7, we obtain the following result.

Theorem 3.8. IVRel(H) satisfies all the conditions of a topological universe over Set except the terminal separator property.

Theorem 3.9. IVRel(H) is Cartesian closed over Set.

Proof. It is clear that IVRel(H) has products by Corollary 3.5. We will show that IVRel(H) has exponential objects.

For any IVHFRs X = (X, RX) and Y = (Y, RY), let YX be the set of all mappings from X into Y. We define the mapping R = [RL, RU] : YX × YX →
$D(H)$ as follows: For each $(f, g) \in Y^X \times Y^X,$

$$R_L(f, g) = \bigwedge \{h \in H : R^f_X(x, y) \land h \leq R^g_Y(f(x), g(y))\}$$

for each $(x, y) \in X \times X$ and

$$R_U(f, g) = \bigwedge \{h \in H : R^f_X(x, y) \land h \leq R^g_Y(f(x), g(y))\}$$

for each $(x, y) \in X \times X$.

Then clearly $(Y^X, R) \in \text{IVRel}(H).$ Let $Y^X = (Y^X, R).$ Then, by the definition of $R,$

$$R^f_X(x, y) \land R^g_Y(f(x), g(y)) \leq R^h_Y(f(x), g(y))$$

and

$$R^f_X(x, y) \land R^g_Y(f(x), g(y)) \leq R^h_Y(f(x), g(y))$$

for each $(f, g) \in Y^X$ and $(x, y) \in X \times X.$

Define $e_{X,Y} : X \times Y^X \to Y$ by $e_{X,Y}(x, f) = f(x)$ for each $(x, f) \in X \times Y^X.$ Let $((x, f), (y, g)) \in (X \times Y^X) \times (X \times Y^X).$ Then, by the process of the proof of Theorem 2.7 in [11], $e_{X,Y} : X \times Y^X \to Y$ is an $\text{IVRel}(H)$-mapping.

For any $Z = (Z, R_Z) \in \text{IVRel}(H),$ let $h : X \times Z \to Y$ be an $\text{IVRel}(H)$-mapping. We define $\overline{h} : Z \to Y^X$ by $\overline{h}(z)(x) = h(x, z)$ for each $z \in Z$ and each $x \in X.$ Let $z, z' \in Z$ and let $x, x' \in X.$ Then, by the process of the proof of Theorem 2.7 in [11], $\overline{h} : Z \to Y^X$ is an $\text{IVRel}(H)$-mapping. Moreover, \overline{h} is the unique $\text{IVRel}(H)$-mapping such that $e_{X,Y} \circ (1_X \times \overline{h}) = h.$ This completes the proof.

\[\Box\]

Remark 3.10. $\text{IVRel}(H)$ has no subobject classifier. Hence $\text{IVRel}(H)$ is not topos.

Example 3.11. Let $H = \{0, 1\}$ be the two points chain and let $X = \{a\}.$ Let R_1 and R_2 be the IVHFRs on X given by $R_1(a, a) = 0$ and $R_2(a, a) = 1.$ Let $1_X : (X, R_1) \to (X, R_2)$ be the identity mapping. Then clearly, 1_X is both a monomorphism and an epimorphism in $\text{IVRel}(H).$ But, 1_X is not an isomorphism in $\text{IVRel}(H).$ Hence $\text{IVRel}(H)$ has no subobject classifier (See [4]).

4. The Relations between Rel(H), IRel(H) and IVRel(H)

Definition 4.1. (see [11]) The concrete category $\text{Rel}(H)$ is defined by: Objects are $(X, R),$ called H-fuzzy relational space on $X,$ where X is any set and R is a mapping from $X \times X$ to $H.$ A morphism $f : (x, R_X) \to (Y, R_Y)$ is
a mapping from X to Y satisfying $R_X(x, y) \leq R_Y(f(x), f(y))$, i.e., $R_X(x, y) \leq (R_Y \circ f^2)(x, y)$ for each $(x, y) \in X \times X$. Every $\text{Rel}(H)$-morphism is called a $\text{Rel}(H)$-mapping.

Definition 4.2. (see [13]) The concrete category $\text{IRel}(H)$ is defined by: Objects are $(X, R) = (X, \mu_R, \nu_R)$, called an intuitionistic H-fuzzy relational space on X, where X is any set and $\mu_R, \nu_R \in H^{X \times X}$ satisfying $\mu_R(x, y) \leq N(\nu_R(x, y))$ for each $(x, y) \in X \times X$. A morphism $f : (X, R_X) \rightarrow (Y, R_Y)$ is a mapping satisfying $\mu_{R_X} \leq \mu_{R_Y} \circ f^2$ and $\nu_{R_X} \geq \nu_{R_Y} \circ f^2$, where $f^2 = f \times f$. Every $\text{IRel}(H)$-morphism is called an $\text{IRel}(H)$-mapping.

Lemma 4.3. Define $G_1, G_2 : \text{IRel}(H) \rightarrow \text{Rel}(H)$ by

$G_1(X, R) = (X, R^L)$, $G_2(X, R) = (X, R^U)$ and $G_1(f) = G_2(f) = f$.

Then G_1 and G_2 are functors.

Proof. Clearly $G_1(X, R) = (X, R^L) \in \text{Rel}(H)$ for each $(X, R) \in \text{IVRel}(H)$. Let $(X, R_X), (Y, R_Y) \in \text{IVRel}(H)$ and let $f : (X, R_X) \rightarrow (Y, R_Y)$ be an $\text{IVRel}(H)$-mapping. Then $R_X^L \leq R_Y^L \circ f^2$ and $R_X^U \leq R_Y^U \circ f^2$. Thus $G_1(f) = f : (X, R_X^L) \rightarrow (Y, R_Y)$ and $G_2(f) : (X, R_X^U) \rightarrow (Y, R_Y^U)$ are $\text{Rel}(H)$-mappings. Hence G_1 and G_2 are functors. □

Lemma 4.4. Define $F : \text{Rel}(H) \rightarrow \text{IVRel}(H)$ by $F_1(X, R) = (X, [R, R])$ and $F(f) = f$. Then F is a functor.

Proof. It is obvious. □

Theorem 4.5. The functor $F : \text{Rel}(H) \rightarrow \text{IVRel}(H)$ is a left adjoint of the functors G_1 and G_2.

Proof. For each $(X, R) \in \text{Rel}(H)$, $1_X : (X, R) \rightarrow G_1F(X, R) = (X, R)$ is a $\text{Rel}(H)$-mapping. Let $(Y, R_Y) \in \text{IVRel}(H)$ and let $f : (X, R) \rightarrow G_1(Y, R_Y)$ be an $\text{IVRel}(H)$-mapping. We will show that $f : F(X, R) = (X, [R, R]) \rightarrow (Y, R_Y)$ is an $\text{IVRel}(H)$-mapping. Since $f : (X, R) = G_1(Y, R_Y) \rightarrow (Y, R_Y^L)$ is a $\text{Rel}(H)$-mapping, $R \leq R_Y^L \circ f^2$. Since $R_X^L \leq R_Y^L$, $R \leq R_Y^U \circ f^2$. So $f : F(X, R) \rightarrow (Y, R_Y)$ is an $\text{IRel}(H)$-mapping. Hence 1_X is a G_1-universal map for (X, R) in $\text{Rel}(H)$. Similarly, we can see that 1_X is a G_2-universal map for (X, R) in $\text{Rel}(H)$. This completes the proof. □

For each $(X, R) \in \text{Rel}(H)$, $F(X, R) = (X, [R, R])$ is called an interval-valued H-fuzzy relation in X induced by (X, R). Let us denote the category consisting of all induced interval-valued H-fuzzy relations and $\text{IVRel}(H)$-mappings as $\text{IVRel}^*(H)$. Then it is clear $\text{IVRel}^*(H)$ is a full subcategory of $\text{IVRel}(H)$.

Theorem 4.6. Two categories $\text{Rel}(H)$ and $\text{IVRel}^*(H)$ are isomorphic.
Proof. It is clear that \(F : \text{Rel}(H) \rightarrow \text{IVRel}'(H) \) is a functor by Lemma 4.4. Consider the restriction \(G_1 : \text{IRel}'(H) \rightarrow \text{Rel}(H) \) of the functor \(G_1 \) in Lemma 4.3. Let \((X, R) \in \text{Rel}(H)\). Then, by Lemma 4.4, \(F(X, R) = (X, [R, R])\). Thus \(G_1F(X, R) = G_1(X, [R, R]) = (X, R)\). So \(G_1 \circ F = 1_{\text{Rel}(H)} \). Now let \((X, [R, R]) \in \text{IRel}'(H)\). Then, by Lemma 4.3, \(G_1(X, [R, R]) = (X, R)\). Thus \(FG_1(X, [R, R]) = (X, [R, R])\). So \(F \circ G_1 = 1_{\text{IRel}'(H)}\). Hence \(F : \text{Rel}(H) \rightarrow \text{IRel}'(H) \) is an isomorphism. This completes the proof.

Lemma 4.7. We define \(G : \text{IVRel}(H) \rightarrow \text{IRel}(H) \) as follows:

\[
G(X, R) = (X, R^L, N(R^U)) \quad \forall (X, R) \in \text{Ob(IVRel}(H))
\]

and

\[
G(f) = f \quad \forall f \in \text{Mor(IVRel}(H)).
\]

Then \(G \) is a functor.

Proof. Let \((X, R) \in \text{Ob(IVRel}(H))\). Then, by Result 2.C(2),

\[
R^L \leq R^U \leq NN(R^U).
\]

Thus \(G(X, R) = (X, R, N(R^U)) \in \text{IRel}(H) \). Let \(f : (X, R_X) \rightarrow (Y, R_Y) \) be any \(\text{IVRel}(H) \)-morphism. Then

\[
R^L_X \leq f^1 \circ f^2 \quad \text{and} \quad R^U_X \leq R^U_Y \circ f^2.
\]

Let \((x, y) \in X \times X\). Then \(R^U_X(x, y) \leq R^U_Y(f(x), f(y)) \). Thus \(N(R^U_X(x, y)) \geq N(R^U_Y(f(x), f(y))) \). So \(N(f^1) \geq N(f^2) \). Hence \(f = f \circ G(X, R_X) \rightarrow G(Y, R_Y) \) is an \(\text{IRel}(H) \)-morphism. \(G \) is a functor.

Lemma 4.8. We define \(K : \text{IRel}(H) \rightarrow \text{IVRel}(H) \) as follows:

\[
K(X, \mu_R, \nu_R) = (X, [\mu_R, N(\nu_R)]) \quad \forall (X, \mu_R, \nu_R) \in \text{Ob(IRel}(H))
\]

and

\[
K(f) = f \quad \forall f \circ \text{Mor(IRel}(H)).
\]

Then \(K \) is a functor.

Proof. Let \((X, \mu_R, \nu_R) \in \text{Ob(IRel}(H))\). Then clearly \(\mu_R \leq N(\nu_R) \). Thus \((X, \mu_R, \nu_R) \in \text{IRel}(H) \). Let \(f : (X, \mu_R, \nu_R) \rightarrow (Y, \mu_R, \nu_R) \) be an \(\text{IRel}(H) \)-morphism. Then

\[
\mu_{RX} \leq \mu_{RY} \circ f^2 \quad \text{and} \quad \nu_{RX} \geq \nu_{RY} \circ f^2.
\]

We can easily see that \(N(\nu_{RX}) \leq N(\nu_{RY}) \circ f^2 \). Thus

\[
K(f) : K(X, \mu_{RX}, \nu_{RX}) \rightarrow (Y, \mu_{RY}, \nu_{RY})
\]

is an \(\text{IVRel}(H) \)-morphism. Hence \(K \) is a functor.

Theorem 4.9. Two categories \(\text{IRel}(H) \) and \(\text{IVRel}(H) \) are isomorphic.
Proof. By Lemmas 4.7 and 4.8, we can easily show that
\[G \circ K = 1_{\text{IRel}(H)} \quad \text{and} \quad K \circ G = 1_{\text{IVRel}(H)}. \]
□

References

