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Abstract: Optimal control synthesis is constructed for systems with the help
of perturbations in the form of small nonlinear terms of order ǫ, and also of the
form of standard Gaussian white noise. The minimized functional differs from
the quadratic one by some nonlinear term. When ǫ = 0, the optimal control
synthesis is found in an exact analytic form. Successive approximations to the
optimal control are constructed with the help of the perturbation method.
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1. Introduction and Problem Statement

An important class of nonlinear control systems is bilinear systems. Such sys-
tems are linear on phase coordinates when the control is fixed, and linear on the
control when the coordinates are fixed. The first point for the study of bilinear
systems is to investigate the dynamic processes of nuclear reactors, kinetics of
neutrons, and heat transfer, which started at the beginning of the 60s’ of the
past century [6]. Further investigations show that many processes in engineer-
ing, biology, ecology and other areas can be described by the bilinear systems
[8]. As an example, in [7] it is shown that bilinear systems may be applied to
describe some chemical reactions and many physical processes in the growth
of the human population. Then, in [2] we can see the theoretical and applied
aspects of bilinear systems, and their structural properties. In the excellent
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survey [9] various results for deterministic and stochastic bilinear systems are
systematized and the basis for the further development of the mathematical
interest to such systems is created.

We consider control nonlinear stochastic systems that can be described in
the form

ẋ(t) = ǫf1(t, x) + B(t)x(t)u(t) + σẇ(t),

x(0) = x0, 0 ≤ t ≤ T. (1)

Here the vector x(t) is from the Euclidean space En, the control u(t) ∈ Em,
the matrices σ and B have continuous and bounded elements, ǫ ≥ 0 is a small
parameter, and the initial vector x0 ∈ En and the constant T ≥ 0 are given.
The function f1(t, x) ∈ En is continuous in the totality of its arguments, and
for all x and y satisfies

|f1(t, x1) − f1(t, x2)| ≤ a1|x1 − x2|,

|f1(t, x)|2 ≤ a2(1 + |x|2), (2)

where a1 and a2 some positive constants, and | · | is the Euclidean norm of x.
Standard Wiener process w(t) satisfies the conditions

w(0) = 0, Mw(t) = 0, Mw(t)w′(t) = It, (3)

where M is mathematical expectation, I is identical matrix and a prime indi-
cates the transpose. The matrix σ(t) in (1) is such that σ(t)σ′(t) is positive
definite. We understand the equation (1) in the sense of Ito [3]. Note that
if ǫ = 0, initial system (1) is bilinear, that is, it contains a nonlinearity of
form x(t)u(t). It is known, that if u = 0, there exists only one solution of the
Cauchy problem (1), see [3]. The problem is to find a control u minimizing the
functional J(0, u), where

J(t, u) = M

[

x′(t)H1x(t) +

∫ T

t

( x′(s)H2(s)x(s)

+ u′(s)H3(s)u(s) + f(s, x(s))) ds

]

. (4)

Here Hi, i = 1, 2, 3 are given matrices, so that H1, H2(t) are non-negative
defined, H3(t) is positive defined in the interval [0, T ], and the matrices H2(t)
and H3(t) are measurable and bounded. The vector f(t, x) is determined be-
low. The functional (4) differs from the quadratic cost criterion and is called
nonclassical, see [5].

Note, that the control problem of the system

ẏ(t) = A(t)y(t) + ǫf1(t, y) + B(t)y(t)u(t) + σẇ(t) (5)
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with the cost functional (refcost) may be easily reduced to the problem (1), (4)
with the help of the substitution

y(t) =

(

exp

∫ t

0

A(s)ds

)

x(t). (6)

2. Algorithm of Successive Approximations

We denote by u0(t, x) and V0(t, x) the optimal control and Bellman function,
respectively, in problem (1), (4) with ǫ = 0. Suppose that V0(t, x) satisfies the
Bellman equation (see [1])

infu

[

∂V0

∂t
+

(

∂V0

∂x

)

′

Bxu + x′H2x + u′H3u

+ u + f +
1

2
Tr

(

σσ′
∂2V0

∂x2

)]

= 0. V0(T, x) = x′H1x. (7)

Here ∂V0

∂t
is the partial derivative with respect to time, and ∂V0

∂x
– the vector of

partial derivatives with respect to coordinates of the vector x, ∂2V0/∂x2 is the
matrix of the second partial derivatives with respect to x, and Tr means the
matrix trace.

From (7) follows that u0(t, x) is given by

u0(t, x) = −
1

2
H−1

3
(t)B′(t)

∂V0

∂x
x. (8)

Now we require the Bellman function V0(t, x) in the following form

V0(t, x) = x′P (t)x + g(t), (9)

where the symmetric matrix P and the scalar function g will be defined.

If we substitute (8) and (9) in the Bellman equation (7), we obtain

x′Ṗ x + ġ − (x′)2PBH−1

3
B′Px2 + x′H2x + f + Tr(Pσσ′) = 0. (10)

Equating to zero the quadratic term coefficients gives the linear matrix differ-
ential equation for the matrix P , that is,

Ṗ + H2 = 0, P (T ) = H1. (11)

Moreover, the matrix P is bounded and non-negative defined in the interval
0 ≤ t ≤ T . In the similar way we equal to zero the terms non depending on
x, and after that the remaining terms to obtain the equation for the function g
and also the formula for the function f(t, x) from (4)

ġ + Tr(Pσσ′) = 0, g(T ) = 0, (12)
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and

f(t, x) = (x′)2P (t)B(t)H−1

3
(t)B′(t)P (t)x2. (13)

Thus, the synthesis of the control for (1), (4) with ǫ = 0 is reduced to
solution of ordinary differential equations (11)-(13). After finding the matrix
P and the function g we have for the Bellman function V0

V0(t, x) = x′P (t)x + Tr

∫ T

t

P (s)σ(s)σ′(s)ds. (14)

Now, let v(t, x) and V (t, x) be the optimal control and the optimal value of
the cost functional J(t, u), respectively in problem (1), (4), under the condition
that system (1) begins to move from the state x at time moment t. We introduce
the following notations

∂V

∂t
= Vt,

∂V

∂x
= Vx, L =

∂

∂t
+

1

2
Tr

(

σσ′
∂2

∂x2

)

(15)

and suppose that V (t, x) satisfies the Bellman equation

supu

[

LV + (Vx)′(Bxu + ǫf1) + x′H2x + u′H3u + f
]

= 0,

V (T, x) = x′H1x. (16)

From this equation follows, that the optimal control v(t, x) is given by

v(t, x) = −
1

2
H−1

3
(t)B′(t)Vx(t, x)x. (17)

We introduce the notation

B1(t) = B(t)H−1

3
(t)B′(t) (18)

and substitute (17) in (16) to obtain for the Bellman function V (t, x)

LV −
1

4
x′

(

V ′

xB1Vx

)

x + ǫV ′

xf1 + x′H2x + f = 0,

V (T, x) = x′H1x. (19)

After finding the solution of the Cauchy problem (19) the optimal control will
be immediately defined by (17).

Now we describe the algorithm of the successive approximations to the
optimal control v(t, x). The Bellman function V (t, x) is represented as a series
of the parameter ǫ (see [4])

V (t, x) = v0(t, x) + ǫV1(t, x) + ǫ2V2(t, x) + . . . . (20)

Here the function V0(t, x) is the Bellman function for problem (1), (4) with
ǫ = 0, and defined according to (9) and (11).

Substituting (20) into (19) and equating the coefficients of the same powers
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of ǫ gives the linear equations for determining the rest of the functions Vj , j ≥ 1,

LVj + f ′Vx,j−1 −
1

4

j
∑

k=0

x′
(

(Vx,k)
′B1Vx,j−k

)

x = 0,

Vj(T, x) = 0, j ≥ 1. (21)

According to (17) and (20), the optimal control will be given by the formula

v(t, x) = −
1

2
H−1

3
(t)B′(t) (Vx,0(t, x) + ǫVx,1(t, x) + . . .) x, (22)

and i-approximation, ui(t, x) to the optimal control – by (17) in which the
partial sum of (20) instead of V is substituted, that is, by

ui(t, x) = −
1

2
H−1

3
(t)B′(t)

(

Vx,0(t, x) + ǫVx,1(t, x) + . . . + ǫiVx,i(t, x)
)

x. (23)
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