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1. Introduction

Let H be a (finite or infinite dimensional) complex Hilbert space, and the set
of all bounded positive and invertible linear operators on H be denoted by
B(H)+. According to [3] Hayashi gave the r-mean as follows: For r > 0 and

A,B ∈ B(H)+ the map Mr(·, ·) : B(H)+ × B(H)+ → B(H)+ defined by

Mr(A,B) = B1/2(B−1/2AB−1/2)rB1/2

is called the r-mean. The map was characterized in the same paper [3, Theorem
2.1] in terms of the another map. In contrast we should mention that the β-
power-mean introduced by Kubo and Ando [4] was given by
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A ♮β B = A1/2(A−1/2BA−1/2)βA1/2 for any real number β and A,B ∈
B(H)+.

In particular, the binary operation ♯α for α ∈ [0, 1] is called the α-power-
mean, i.e., A ♯α B = A1/2(A−1/2BA−1/2)αA1/2.

α, β-power-means are used to express alternatively the Furuta-type inequal-
ities as we see in the literature, e.g., [5] and references therein.

Instead of two operators we generalize the β-power-mean (i.e., the map
Mr(·, ·)) to 2n + 1 operators for any natural number n in this section.

In what follows we assume that A,B,Ai ∈ B(H)+, i = 1, 2, · · ·, 2n.

Definition 1.1. Let ri be any real numbers, i = 1, 2, · · ·, 2n − 1. The map
Mr2n−1 : B(H)+ × B(H)+ × · · · × B(H)+ → B(H)+ (i.e., Mr2n−1 maps 2n + 1
copies of B(H)+ into B(H)+) is defined by

Mr2n−1(B,A1, A2, · · ·, A2n−1, A2n)

= A
1/2
2n [A

−1/2
2n−1[A

1/2
2n−2 · · · [A

1/2
4 [A

−1/2
3 [A

1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2 ]r2A

−1/2
3 ]r3

A
1/2
4 ]r4 · · · A

−1/2
2n−3]

r2n−3A
1/2
2n−2]

r2n−2A
−1/2
2n−1]

r2n−1A
1/2
2n .

For n = 1 and A1 = A2 = A in particular:

Mr1(B,A,A) = A1/2(A−1/2BA−1/2)r1A1/2 = Mr1(B,A) = A♮βB

if r1 = β.

Immediately we have.

Corollary 1.2. The following relations hold.

(1) Mr1(B,A1, A2) = A
1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2

= A
1/2
2 A

−1/2
1 Mr1(B,A1)A

−1/2
1 A

1/2
2 = A

1/2
2 A

−1/2
1 (A1♮r1B)A

−1/2
1 A

1/2
2 .

(2) M
−r1(B,A1, A2) = Mr1(B

−1, A−1
1 , A2) = [Mr1(B,A1, A

−1
2 )]−1.

We see that Mr1(·, ·) can be expressed in terms of Mr1(·, ·, ·), and vice versa.

Corollary 1.3. For each t ∈ [0, 1], p ≥ 1, r ≥ t and s ≥ 1, if C ≤ B ≤ A

for A,B ∈ B(H)+ and C is a bounded positive linear operators, then:

(1) A1−t+r ≥ [Ms(C
p, Bt, Ar)]

1−t+r
(p−t)s+r

= [Ar/2B−t/2(Bt ♮s Cp)B−t/2Ar/2]
1−t+r

(p−t)s+r .

(2) A ≥ A
t−r
2 [Ar/2B−t/2(Bt ♮s Cp)B−t/2Ar/2]

1−t+r
(p−t)s+r A

t−r
2

= M 1−t+r
(p−t)s+r

(B−t/2(Bt♮sC
p)B−t/2, A−r, At−r)



GENERALIZATION OF β-POWER-MEAN... 277

= A
t−r
2 [A

r−t
2 At/2B−t/2(Bt♮sC

p)B−t/2At/2A
r−t
2 ]

1−t+r
(p−t)s+r A

t−r
2

= At−r♯ 1−t+r
(p−t)s+r

[At/2B−t/2(Bt♮sC
p)B−t/2At/2].

Proof. With the conditions in above the next inequality holds.

A1−t+r ≥ [Ar/2(B−t/2CpB−t/2)sAr/2]
1−t+r

(p−t)s+r ,

and it is called extension of the grand Furuta inequality, see [6].

(1) The proof is easy by (1) in Corollary 1.2.

(2) The inequality is trivial due to (1), and the equality follows by (1) in
Corollary 1.2.

The purpose of this paper is to express the map Mr2n−1 (i.e., a generalization
of the β-power-mean) alternatively in Section 2. In Section 3 two special cases
of Theorem 2.1 are given, and consequently, we obtain some applications about
the Furuta-type operator inequalities in Section 4.

2. Alternative Expression of the Map Mr2n−1

The formula (1) in Corollary 1.2 and its similar forms will be used in the proof
of the next result.

Theorem 2.1. The following relations hold.

Mr2n−1(B,A1, A2, · · ·, A2n−1, A2n)

= A
1/2
2n [A

−1/2
2n−1[A

1/2
2n−2 · · · [A

1/2
4 [A

−1/2
3 [A

1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2 ]r2A

−1/2
3 ]r3

A
1/2
4 ]r4 · · ·A

−1/2
2n−3]

r2n−3A
1/2
2n−2]

r2n−2A
−1/2
2n−1]

r2n−1A
1/2
2n

= Mr2n−1{[Mr2n−3 [[Mr2n−5 · · · [[Mr5 [[Mr3 [[Mr1(B,A1, A2)]
r2 , A3, A4]]

r4 ,

A5, A6, ]]
r6 · ··]]r2n−4 , A2n−3, A2n−2]]

r2n−2 , A2n−1, A2n}.

Proof. The first equality is by Definition 1.1 and we shall use the induction
process to give the proof of the second equality.

For n = 1:

Mr1(B,A1, A2) = A
1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2 = Mr1(B,A1, A2).

For n = 2:

Mr3(B,A1, A2, A3, A4)
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= A
1/2
4 [A

−1/2
3 [A

1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2 ]r2A

−1/2
3 ]r3A

1/2
4

= A
1/2
4 [A

−1/2
3 [Mr1(B,A1, A2)]

r2A
−1/2
3 ]r3A

1/2
4

= Mr3{[Mr1(B,A1, A2)]
r2 , A3, A4}.

For n = 3:

Mr5(B,A1, A2, A3, A4, A5, A6)

= A
1/2
6 [A

−1/2
5 [A

1/2
4 [A

−1/2
3 [A

1/2
2 (A

−1/2
1 BA

−1/2
1 )r1

A
1/2
2 ]r2A

−1/2
3 ]r3A

1/2
4 ]r4A

−1/2
5 ]r5A

1/2
6

= A
1/2
6 [A

−1/2
5 [Mr3 [[Mr1(B,A1, A2)]

r2 , A3, A4]
r4 ]A

−1/2
5 ]r5A

1/2
6

= Mr5{[Mr3 [[Mr1(B,A1, A2)]
r2 , A3, A4]]

r4 , A5, A6}.

For n = 4:

Mr7(B,A1, A2, A3, A4, A5, A6, A7, A8)

= A
1/2
8 [A

−1/2
7 [A

1/2
6 [A

−1/2
5 [A

1/2
4 [A

−1/2
3 [A

1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2 ]r2

A
−1/2
3 ]r3A

1/2
4 ]r4A

−1/2
5 ]r5A

1/2
6 ]r6A

−1/2
7 ]r7A

1/2
8

= A
1/2
8 [A

−1/2
7 [Mr5 [[Mr3 [[Mr1(B,A1, A2)]

r2 , A3, A4]]
r4 , A5, A6]

r6 ]A
−1/2
7 ]r7A

1/2
8

= Mr7{[Mr5 [[Mr3 [[Mr1(B,A1, A2)]
r2 , A3, A4]]

r4 , A5, A6]]
r6 , A7, A8}.

Suppose that the relation holds for n = k for any positive integer k, i.e.,

Mr2k−1
(B,A1, A2, · · ·, A2k−1, A2k)

= A
1/2
2k [A

−1/2
2k−1[A

1/2
2k−2 · · · [A

1/2
4 [A

−1/2
3 [A

1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2 ]r2

A
−1/2
3 ]r3A

1/2
4 ]r4 · · · A

−1/2
2k−3]

r2k−3A
1/2
2k−2]

r2k−2A
−1/2
2k−1]

r2k−1A
1/2
2k

= Mr2k−1
{[Mr2k−3

[[Mr2k−5
· · · [[Mr5 [[Mr3 [[Mr1(B,A1, A2)]

r2 , A3, A4]]
r4 ,

A5, A6, ]]
r6 · · ·]]r2k−4 , A2k−3, A2k−2]]

r2k−2 , A2k−1, A2k}.

Then, for n = k + 1:

Mr2k+1
(B,A1, A2, · · ·, A2k+1, A2k+2)

= A
1/2
2k+2[A

−1/2
2k+1[A

1/2
2k · · · [A

1/2
4 [A

−1/2
3 [A

1/2
2 (A

−1/2
1 BA

−1/2
1 )r1A

1/2
2 ]r2

A
−1/2
3 ]r3A

1/2
4 ]r4 · · · A

−1/2
2k−1]

r2k−1A
1/2
2k ]r2kA

−1/2
2k+1]

r2k+1A
1/2
2k+2

= A
1/2
2k+2[A

−1/2
2k+1[Mr2k−1

([Mr2k−3
[[Mr2k−5

· · · [[Mr5 [[Mr3 [[Mr1(B,A1, A2)]
r2

, A3, A4]]
r4 , A5, A6]

r6 · ··, A2k−1, A2k]r2nA
−1/2
2k+1]

r2km+1A
1/2
2k+2

= Mr2k+1
{[Mr2k−1

[[Mr2k−3
· · · [[Mr5 [[Mr3 [[Mr1(B,A1, A2)]

r2 , A3, A4]]
r4 ,
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A5, A6, ]]
r6 · · ·, A2k−3, A2k−2]]

r2k−2 , A2k−1, A2k]]r2k , A2k+1, A2k+2}.

This completes the induction process and the proof is finished.

3. Special Cases of Theorem 2.1

Consequences of Theorem 2.1 are the next two special cases. The conditions in
both corollaries below are not much of significant meaning, but only to be used
in applications in the Section 4.

Corollary 3.1. The following equality holds for t ∈ [0, 1], and any real
numbers pi ≥ 1, i = 1, 2, · · ·, 2n.

[A−t/2[At/2 · · · [At/2[A−t/2[At/2(A−t/2Bp1A−t/2)p2At/2]p3A−t/2]p4At/2]p5

· · · A−t/2]p2n−2At/2]p2n−1 ]A−t/2]p2n

= A−t/2[At ♮p2n
(At ♮p2n−2 (At ♮p2n−4 (At · · · (At ♮p8 (At ♮p6 (At ♮p4

(At ♮p2 Bp1)p3)p5)p7 · · ·)p2n−3)p2n−1 ]A−t/2.

Proof. In Theorem 2.1 replace B by Bp1. Also let ri = pi+1, i = 1, 2, . . . , 2n−
1, and Aj = At, j = 1, 2, · · ·, 2n. Then, by Definition 1.1,

A−t/2{Mp2n
(Bp1, At, At, · · ·, At, At)}A−t/2

(there are 2n copies of At)

= [A−t/2[At/2 · · · [At/2[A−t/2[At/2(A−t/2Bp1A−t/2)p2At/2]p3A−t/2]p4At/2]p5

· · · A−t/2]p2n−2At/2]p2n−1 ]A−t/2]p2n

(i.e., the left side of of the equality),

and by Theorem 2.1,

A−t/2{Mp2n
(Bp1, At, At, · · ·, At, At)}A−t/2

(there are 2n copies of At)

= A−t/2{Mp2n
[[Mp2n−2 [[Mp2n−4 · · · [[Mp6 [[Mp4 [[Mp2(B

p1, At, At)]p3 , At, At]]p5

, At, At, ]]p7 · · ·, At, At]]p2n−3 , At, At]]p2n−1 , At, At]}A−t/2.

Now, applying (1) in Corollary 1.2 we obtain inductively from above.

For n = 1: A−t/2{Mp2(B
p1, At, At)}A−t/2 = A−t/2(At ♮p2 Bp1)A−t/2.

For n = 2:

A−t/2{Mp4 [[Mp2(B
p1, At, At)]p3 , At, At]}A−t/2
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= A−t/2[Mp4[(A
t ♮p2 Bp1)p3, At, At]]A−t/2

= A−t/2(At ♮p4 (At ♮p2B
p1)p3)A−t/2.

For n = 3:

A−t/2{Mp6 [[Mp4 [[Mp2(B
p1, At, At)]p3 , At, At]]p5 , At, At, ]}A−t/2

= A−t/2[Mp6[(A
t ♮p4(A

t♮p2B
p1)p3)p5 , At, At]]A−t/2

= A−t/2[At♮p6(A
t♮p4(A

t♮p2B
p1)p3)p5 ]A−t/2.

It leads to

A−t/2{Mp2n
[[Mp2n−2 [[Mp2n−4 · · · [Mp6 [[Mp4 [[Mp2(B

p1, At, At)]p3 , At, At]]p5

, At, At, ]]p7 · ··, At, At]]p2n−3 , At, At]]p2n−1 , At, At]}A−t/2

= A−t/2[At♮p2n
(At♮p2n−2(A

t♮p2n−4(A
t · · · (At♮p8(A

t♮p6(A
t♮p4

(At♮p2B
p1)p3)p5)p7 · ··)p2n−3)p2n−1 ]A−t/2,

which is the right side of the equality and this completes the proof.

Corollary 3.2. The following equality holds for t ∈ [0, 1], and any real
numbers pi ≥ 1, i = 1, 2, · · ·, 2n.

A
1−t
2 [At/2[A−t/2[At/2 · · · [At/2[A−t/2(A

t−1
2 BA

t−1
2 )p2A−t/2]p3At/2]p4A−t/2]p5

· · · A−t/2]p2n−1At/2]p2nA
1−t
2

= A1−t♮p2n
{A♮p2n−1{A

1−t♮p2n−2 · · · {A
1−t♮p4{A♮p3(A

1−t♮p2B)}} · ··},

and there are 2n − 3 terms of the bracksts ”}” at the end for n ≥ 2.

Proof. In Theorem 2.1 let A1 = A2n = A1−t, Aj = A−t, j = 2, 3, ..., 2n − 1,
and ri = pi+1, i = 1, 2, · · ·, 2n − 1. Then, by Definition 1.1,

Mp2n
(B,A1−t, A−t, · · ·, A−t, A1−t)

(there are 2n − 2 copies of A−t)

= A
1−t
2 [At/2[A−t/2[At/2 · · · [A−t/2[At/2[A−t/2(A

t−1
2 BA

t−1
2 )p2A−t/2]p3At/2]p4

A−t/2]p5 · · · A−t/2]p2n−1At/2]p2nA
1−t
2

(i.e., the left side of the equality), and by Theorem 2.1:

Mp2n
(B,A1−t, A−t, · · ·, A−t, A1−t)

(there are 2n − 2 copies of A−t)

= Mp2n
{[Mp2n−2 [[Mp2n−4 · · · [[Mp6 [[Mp4 [[Mp2(B,A1−t, A−t)]p3 , A−t, A−t]]p5

, A−t, A−t, ]]p7 · · · A−t, A−t]]p2n−3 , A−t, A−t]]p2n−1 , A−t, A1−t}.
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First note that

[Mp2(B,A1−t, A−t)]p3 = [A−1/2(A1−t♮p2B)A−1/2]p3

= A−1/2[A♮p3(A
1−t♮p2B)]A−1/2.

Now, again, applying (1) in Corollary 1.2 we obtain inductively from above

For n = 2:

Mp4{[Mp2(B,A1−t, A−t)]p3 , A−t, A1−t}

= Mp4{[A
−1/2(A1−t♮p2B)A−1/2]p3, A−t, A1−t}

= A
1−t
2 [At/2A−1/2[A♮p3(A

1−t♮p2B)]A−1/2At/2]p4A
1−t
2

= A
1−t
2 {A

t−1
2 {A♮p3(A

1−t♮p2B)}A
t−1
2 }p4A

1−t
2 = A1−t♮p4{A♮p3(A

1−t♮p2B)},

and there is 2 × 2 − 3 = 1 term of ”}”.

For n = 3:

Mp6{[Mp4 [[Mp2(B,A1−t, A−t)]p3 , A−t, A−t]]p5, A−t, A1−t, }

= A
1−t
2 {A

t−1
2 {A♮p5{A

1−t♮p4{A♮p3(A
1−t♮p2B)}}}A

t−1
2 }p6A

1−t
2

= A1−t♮p6{A♮p5{A
1−t♮p4{A♮p3(A

1−t♮p2B)}}},

and there are 2 × 3 − 3 = 3 terms of ”}”.

For n = 4:

Mp8([Mp6 [[Mp4 [[Mp2(B,A1−t, A−t)]p3 , A−t, A−t]]p5, A−t, A−t]]p7, A−t, A1−t, )

= A
1−t
2 {A

t−1
2 {A♮p7{A

1−t♮p6{A♮p5{A
1−t♮p4{A♮p3(A

1−t♮p2B)

}}}}}}A
t−1
2 }p8A

t−1
2 ]p6A

1−t
2

= A1−t♮p8{A♮p7{A
1−t♮p6{A♮p5{A

1−t♮p4{A♮p3(A
1−t♮p2B)}}}}},

and there are 2 × 4 − 3 = 5 terms of ”}”.

Inductively it leads to the required conclusion.

4. Applications

Recently Furuta gave and proved the next two theorems; one is the further
extension of an order preserving operator inequality, and the other the log
majorization.

Theorem A. (see [1], Theorem 3.3) Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1],
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and p1, p2, · · ·, p2n ≥ 1 for a natural number n. Then the following inequality
holds for r ≥ t.

A1−t+r ≥ {Ar/2[A−t/2[At/2 · · · At/2[A−t/2[At/2(A−t/2Bp1A−t/2)p2At/2]p3

A−t/2]p4At/2]p5 · · · A−t/2]p2n−2At/2]p2n−1 ]A−t/2]p2nAr/2}q,

where q = 1−t+r
(···((((p1−t)p2+t)p3−t)p4+t)p5−···−t)p2n+r .

In Theorem A, there are n terms of A−t/2 and n− 1 terms of At/2 alterna-
tively arranged on the left side of Bp1, and the same arrangement on the right
side of Bp1. As for the denominator of q, there are n terms of −t and n − 1
terms of t alternatively arranged.

Theorem B. (see [2], Theorem 2.1) Let A > 0, B ≥ 0, t ∈ [0, 1], and
p1, p2, · · ·, p2n ≥ 1 for a natural number n. Then the following log majorization
holds for r ≥ t.

(A♯ 1
p1

B)h ≻(log) A1−t+r♯α{A
1−t♮p2n

{A♮p2n−1{A
1−t♮p2n−2 · ··

{A1−t♮p4{A♮p3(A
1−t♮p2B)}} · ··}.

where h = p1p2···p2n(1−t+r)
(···((((p1−t)p2+t)p3−t)p4+t)p5−···−t)p2n+r , and α = h

p1p2···p2n
.

In the right side of the log majorization in Theorem B, there are n terms
of A1−t and n− 1 terms of A alternatively arranged on the left side of B. Also,
for n ≥ 2, there are 2(n − 1) terms of the brackets } at the end.

Theorem 4.1.Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1], and for a natural
number n, pi ≥ 1, i = 1, 2, · · ·, 2n. Then the following inequality holds for r ≥ t.

(1) A1−t+r ≥ {Ar/2[A−t/2[At/2 · · ·At/2[A−t/2[At/2(A−t/2Bp1A−t/2)p2At/2]p3

A−t/2]p4At/2]p5 · · · A−t/2]p2n−2At/2]p2n−1 ]A−t/2]p2nAr/2}q

= {A
r−t
2 [At♮p2n

(At♮p2n−2(A
t♮p2n−4(A

t · · · (At♮p8(A
t♮p6(A

t♮p4

(At ♮p2 Bp1)p3)p5)p7 · · ·)p2n−3 ]p2n−1A
r−t
2 }q.

(2) A ≥ A
t−r
2 {A

r−t
2 [At♮p2n

(At♮p2n−2(A
t♮p2n−4(A

t · · · (At♮p8(A
t♮p6(A

t♮p4

(At♮p2B
p1)p3)p5)p7 · ··)p2n−3 ]p2n−1A

r−t
2 }qA

t−r
2

= At−r♯q {A
t♮p2n

(At♮p2n−2(A
t♮p2n−4(A

t · · · (At♮p8(A
t♮p6(A

t♮p4

(At♮p2B
p1)p3)p5)p7 · ··)p2n−3}p2n−1 ,

where q = 1−t+r
(···((((p1−t)p2+t)p3−t)p4+t)p5−···−t)p2n+r ≤ 1.
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Proof. (1) The inequality is due to Theorem A, and the equality is by
Corollary 3.1.

(2) The inequality is trivial from (1), and the equality is due to α-power
mean. �

Corollary 4.2. Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1], and for a natural
number n, pi ≥ 1, i = 1, 2, · · ·, 2n. Then the following inequality holds.

A ≥ {At/2[A−t/2[At/2 · · · At/2[A−t/2[At/2(A−t/2Bp1A−t/2)p2At/2]p3

A−t/2]p4At/2]p5 · · · A−t/2]p2n−2At/2]p2n−1 ]A−t/2]p2nAt/2}q

= [At♮p2n
(At♮p2n−2(A

t♮p2n−4(A
t · · · (At♮p8(A

t♮p6(A
t♮p4

(At♮p2B
p1)p3)p5)p7 · ··)p2n−3 ]qp2n−1 ,

where q = 1
(···((((p1−t)p2+t)p3−t)p4+t)p5−···−t)p2n+t ≤ 1.

Proof. The inequality comes from [1, Theorem 3.1], and this is nothing but
a special case of Theorem A when r = t. The equality is a special case of (2) in
Theorem 4.1. when r = t, and note that I ♯α B = Bα. �

Corollary 4.3. Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1], and pi ≥ 1 for
i = 1, 2, 3, 4. Then the following inequality holds for r ≥ t.

(1) A1−t+r ≥ {Ar/2[A−t/2[At/2(A−t/2Bp1A−t/2)p2At/2]p3A−t/2]p4

Ar/2}
1−t+r

(((p1−t)p2+t)p3−t)p4+r = {A
r−t
2 [At ♮p4(A

t♮p2B
p1)p3 ]A

r−t
2 }

1−t+r
(((p1−t)p2+t)p3−t)p4+r .

(2) A ≥ A
t−r
2 {A

r−t
2 [At♮p4(A

t♮p2B
p1)]p3A

r−t
2 }

1−t+r
(((p1−t)p2+t)p3−t)p4+r A

t−r
2

= At−r♯ 1−t+r
(((p1−t)p2+t)p3−t)p4+r

[At♮p4(A
t♮p2B

p1)]p3 .

Proof. The inequality in (1) comes from [1, Corollary 3.4], and this is a
special case of Theorem A when n = 2. Thus, Corollary 4.3 is just a special
case of Theorem 4.1 when n = 2. �

Theorem 4.4. Let A > 0, B ≥ 0, t ∈ [0, 1], and for a natural number n,

pi ≥ 1, i = 1, 2, · · ·, 2n. Then the following log majorization holds for r ≥ t.

(A♯ 1
p1

B)h ≻(log) A1−t+r♯α{A
1−t♮p2n

{A♮p2n−1{A
1−t♮p2n−2 · ··

{A1−t♮p4{A♮p3(A
1−t♮p2B)}} · ··}

(there are 2(n − 1) terms of the brackets } on the right of B for n ≥ 2)

= A1−t+r ♯α {A
1−t
2 [At/2[A−t/2[At/2 · · · [At/2[A−t/2(A

t−1
2 BA

t−1
2 )p2A−t/2]p3
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At/2]p4 · ·· A−t/2]p2n−1At/2]p2nA
1−t
2 },

where h = p1p2···p2n(1−t+r)
(···((((p1−t)p2+t)p3−t)p4+t)p5−···−t)p2n+r , α = h

p1p2···p2n
.

Proof. Clearly this is due to Theorem B and Corollary 3.2. �

Corollary 4.5. Let A > 0, B ≥ 0, and for a natural number n, pi ≥ 1,
i = 1, 2 · ··, 2n. Then the following log majorization holds for r ≥ 1.

(A♯ 1
p1

B)h ≻(log) Ar♯α(A♮p2n−1(A♮p2n−3(A♮p2n−5 ···(A♮p5(A♮p3B
p2)p4)p6)p8···)p2n

= Ar♯α[A1/2[A−1/2[A1/2···[A1/2[A−1/2Bp2A−1/2]p3A1/2]p4···A−1/2]p2n−1A1/2]p2n ,

where h = p1p2···p2nr
(···((((p1−1)p2+1)p3−1)p4+1)p5−···−1)p2n+r , α = h

p1p2···p2n
.

Proof. Let t = 1 in Theorem 4.4 to get the result. �

Corollary 4.6. Let A > 0, B ≥ 0, t ∈ [0, 1], and pi ≥ 1, i = 1, 2, 3, 4. Then
the following log majorization holds for r ≥ t.

(A♯ 1
p1

B)h ≻(log) A1−t+r♯α{A
1−t♮p4{A♮p3(A

1−t♮p2B)}}

= A1−t+r♯α{A
1−t
2 [At/2[A−t/2(A

t−1
2 BA

t−1
2 )p2A−t/2]p3At/2]p4A

1−t
2 },

where h = p1p2p3p4(1−t+r)
(((p1−t)p2+t)p3−t)p4+r , and α = h

p1p2p3p4
.

Proof. Let n = 2 in Theorem 4.4. �

Corollary 4.7. Let A > 0, B ≥ 0, t ∈ [0, 1], and δ ∈ [0, 1]. Then the
following log majorization holds for s ≥ 1 and r ≥ t.

(A♯δB)h ≻(log) A1−t+r♯α(A1−t♮sB),

where h = (1−t+r)s
(1−δt)s+δr , and α = h

s δ.

Proof. Let 1
p1

= δ ∈ [0, 1], p2 = p3 = 1, and p4 = s in Corollary 4.6, and
note, in this case, that

A
1−t
2 [At/2[A−t/2(A

t−1
2 BA

t−1
2 )p2A−t/2]p3At/2]p4A

1−t
2 = A1−t♮sB. �
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