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1. Introduction

Theory of fractional derivatives and integrals has gained much attention during
the past few decades. It is found that derivatives and integrals of fractional-
order are very suitable in modeling the behavior of premotor neurons in the
vestibulo-ocular reflex and also in modeling diffusion in a specific type of porous
medium. It has been shown that fractional differential equations provide ex-
cellent tools in description of the properties of materials used in industry.
Fractional-order models are found to be more accurate than classical integer-
order models in mathematical treatment of many problems arising in the fields
of physics, electrochemistry, signal processing, electromagnetic and so forth.
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Recently, there are some papers studying the boundary value problems for
nonlinear fractional differential equations; see [2] and [4]-[6].

Zhang [6] has proved the existence of positive solutions for a nonlinear frac-
tional differential equation boundary value problem involving Caputo’s deriva-
tive:

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where 1 < α ≤ 2 is a real number, Dα
0+ is the Caputo’s fractional derivative,

and f : [0, 1] × [0,+∞) → [0,+∞) is continuous.

Qiu and Bai [4] gave the existence of a positive solution to boundary value
problem of the following fractional differential equation:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0 ,

where 2 < α ≤ 3, Dα
0+ is the Caputo’s differentiation, and f : (0, 1] × [0,∞) →

[0,∞) with lim
t→0+

f(t, ·) = +∞ (that is f is singular at t = 0).

Tian and Chen [5] proved an existence result for the problem involving
Riemann-Liouville fractional derivative:

Dqu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = αD
(q−1)

2 u(t) |t=ξ,

where 1 < q ≤ 2 is a real number, α and ξ satisfy certain conditions.

Motivated by the above results and methods, we discuss in this paper the
existence of a positive solution to the following nonlinear fractional differential
equation with nonlinear boundary conditions:

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u′(0) = 0, u′′(0) = 0, u(0) = g(u′(1)),
(1)

where 2 < α ≤ 3 is a real number, Dα
0+ is the Caputo’s differentiation, f :

[0, 1] × [0,+∞) → [0,+∞) is continuous. We impose growth conditions on
the functions f and g, and apply fixed-point theorem in a cone to prove the
existence of a positive solution.

We only found one paper [2] dealing with the existence theorems for non-
linear fractional differential equations with nonlinear boundary conditions, in
which the authors study a different problem using Amann Theorem and the
method of upper and lower solutions.
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2. Preliminaries

We present here the definitions and some fundamental properties of Caputo’s
derivative which can be found in the literature.

Definition 1. The Caputo fractional derivative of order α > 0 of a con-
tinuous function u : (0,∞) → R is given by

Dα
0+u(t) =

1

Γ(n − α)

∫ t

0

u(n)(s)

(t − s)α−n+1
ds,

where n− 1 < α ≤ n, provided that the right-hand side is pointwise defined on
(0,∞).

Definition 2. The Riemann-Liouville fractional integral of order α > 0 of
a function u : (0,∞) → R is given by

Iα
0+u(t) =

1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Lemma 3. (see [3] and [6]) Let n − 1 < α ≤ n, u ∈ Cn[0, 1]. Then

Iα
0+Dα

0+u(t) = u(t) − C1 − C2t − · · · − Cntn−1,

where Ci ∈ R, i = 1, 2, . . . n.

Lemma 4. (see [1]) Let E be a Banach space, P ⊆ E a cone, and Ω1, Ω2

are two bounded open balls of E centered at the origin with Ω1 ⊂ Ω2. Suppose
that T : P ∩ (Ω2 \Ω1) → P is a completely continuous operator such that either

(i) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then T has a fixed point in P ∩ (Ω2 \ Ω1).

Before proceeding to the next section, we first prove the following lemma.

Lemma 5. Given h(t) ∈ C[0, 1] and a continuous function g : [0,+∞) →
[0,+∞), let 2 < α ≤ 3, then the boundary value problem

Dα
0+u(t) = h(t), 0 < t < 1,

u′(0) = 0, u′′(0) = 0, u(0) = g(u′(1)),
(2)

has a unique solution

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1h(s)ds + g

(

1

Γ(α − 1)

∫ 1

0
(1 − s)α−2h(s)ds

)

.
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Proof. With Lemma 3, we can reduce equation (2) to an equivalent integral
equation

u(t) = Iα
0+h(t) + C1 + C2t + C3t

2.

We have

u′(t) =
1

Γ(α − 1)

∫ t

0
(t − s)α−2h(s)ds + C2 + 2C3t,

u′′(t) =
1

Γ(α − 2)

∫ t

0
(t − s)α−3h(s)ds + 2C3.

Then from the boundary conditions u′(0) = 0, u′′(0) = 0, we have C2 = C3 = 0,
and

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1h(s)ds + C1.

Since u(0) = g(u′(1)), we have C1 = g( 1
Γ(α−1)

∫ 1
0 (1 − s)α−2h(s)ds). Therefore,

the unique solution of (2) is

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1h(s)ds + g

(

1

Γ(α − 1)

∫ 1

0
(1 − s)α−2h(s)ds

)

. �

3. Main Results

Throughout this section, we make the following assumptions about the func-
tions f and g :

(A1) f : [0, 1] × [0,+∞) → [0,+∞) is continous, g : [0,+∞) → [0,+∞) is
continous and non-decreasing.

(A2) There exists a positive constant L, such that |g(x) − g(y)| ≤ L |x − y| ,
for any x, y ∈ [0,+∞).

(A3) limx→+∞
g(x)

x
= 0, limx→0+

g(x)
x

= +∞.

Throughout this section, we use the following notations:

L1 =
1

αΓ(α)
, (3)

L2 =
1

Γ(α)
, (4)

F1 =
1

αΓ(α)
+

L

Γ(α)
, (5)
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where L is the constant in assumption (A2).

From (A3), there exists a positive constant N1, such that if x < N1, then
g(x)

x
≥ 1, i.e., g(x) ≥ x.

Similarly, there exists a positive constant N2(N2 > N1), such that if x > N2,

then g(x)
x

≤ 1, i.e., g(x) ≤ x.

Then we choose a positive constant R, such that R >
N2(L1+L2)

L2
. Similarly,

we can choose a positve constant r, such that r <
N1(L1+L2)

L2
. Then r < R.

With the constant r,R chosen as above, we impose additional conditions
on the function f :

(A4) f(t, x) ≤ R
L1+L2

, for (t, x) ∈ [0, 1] × [0, R];

(A5) f(t, x) ≥ r
L1+L2

, for (t, x) ∈ [0, 1] × [0, r],

where L1, L2 are constants in (3) and (4).

We construct a cone P = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1}, where E = C[0, 1]
and ‖u‖ = max

0≤t≤1
|u(t)|. E is a Banach space. We define an operator T : P → P

as follows:

Tu(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds (6)

+ g

(

1

Γ(α − 1)

∫ 1

0
(1 − s)α−2f(s, u(s))ds

)

.

We state the main existence results in the following theorem.

Theorem 6. Let 2 < α ≤ 3, the functions f and g satisfy assumptions
(A1)-(A5), then problem (1) has a positive solution.

Proof. The proof is divided into three steps.

Step 1. We prove that T maps P to P .

From (6) and (A1), it is clear that Tu(t) is non-negative. Next, we prove
that for u ∈ P , we have Tu(t) ∈ C[0, 1]. Since u(t) ∈ C[0, 1], there exists a
constant M > 0 such that |u(t)| ≤ M for t ∈ [0, 1]. With assumption (A1), let

F = max
(t,u)∈[0,1]×[0,M ]

f(t, u(t)) + 1,

we have

0 ≤ f(t, u(t)) < F. (7)

We consider the following three cases:
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Case 1. t0 ∈ (0, 1), t ∈ (t0, 1]. By mean value theorem, we have

(t − s)α−1 − (t0 − s)α−1 = (α − 1)(t̄ − s)α−2(t − t0) (8)

for some t̄ ∈ (t0, t). It follows from (7) and (8) that

|Tu(t) − Tu(t0)| =
1

Γ(α)

∫ t0

0

[

(t − s)α−1 − (t0 − s)α−1
]

f(s, u(s))ds

+
1

Γ(α)

∫ t

t0

(t − s)α−1f(s, u(s))ds

<
F

Γ(α)

∫ t0

0
(α − 1)(t̄ − s)α−2(t − t0)ds +

F

Γ(α)

∫ t

t0

(t − s)α−1ds

=
(t − t0)(α − 1)F

Γ(α)

∫ t0

0
(t̄ − s)α−2ds +

F

αΓ(α)
(t − t0)

α

=
(t − t0)(α − 1)F

Γ(α)

(t̄α−1 − (t̄ − t0)
α−1)

α − 1
+

F

αΓ(α)
(t − t0)

α

≤
(t − t0)(α − 1)F

Γ(α)

1

α − 1
+

F

αΓ(α)
(t − t0)

α

=
F

Γ(α)
(t − t0) +

F

αΓ(α)
(t − t0)

α.

Given ǫ > 0, let

δ = min

(

ǫΓ(α)

2F
, (

ǫαΓ(α)

2F
)

1
α

)

.

Then when 0 < t − t0 < δ, we have

|Tu(t) − Tu(t0)| <
F

Γ(α)
(t − t0) +

F

αΓ(α)
(t − t0)

α

≤
F

Γ(α)

ǫΓ(α)

2F
+

F

αΓ(α)

ǫαΓ(α)

2F
=

ǫ

2
+

ǫ

2
= ǫ.

Case 2. t0 ∈ (0, 1], t ∈ [0, t0)

|Tu(t0) − Tu(t)|

=
1

Γ(α)

∫ t

0

[

(t0 − s)α−1 − (t − s)α−1
]

f(s, u(s))ds

+
1

Γ(α)

∫ t0

t

(t0 − s)α−1f(s, u(s))ds

<
F

Γ(α)

∫ t

0
(α − 1)(t̄ − s)α−2(t0 − t)ds +

F

Γ(α)

∫ t0

t

(t0 − s)α−1ds
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=
(t0 − t)(α − 1)F

Γ(α)

∫ t

0
(t̄ − s)α−2ds +

F

αΓ(α)
(t0 − t)α

=
(t0 − t)(α − 1)F

Γ(α)

(

t̄α−1 − (t̄ − t)α−1

α − 1

)

+
F

αΓ(α)
(t0 − t)α

≤
(t0 − t)(α − 1)F

Γ(α)

1

α − 1
+

F

αΓ(α)
(t0 − t)α

=
F

Γ(α)
(t0 − t) +

F

αΓ(α)
(t0 − t)α,

where t < t̄ < t0.

Given ǫ > 0, let

δ = min(
ǫΓ(α)

2F
, (

ǫαΓ(α)

2F
)

1
α ).

Then when 0 < t0 − t < δ, we have

|Tu(t0) − Tu(t)| <
F

Γ(α)
(t0 − t) +

F

αΓ(α)
(t0 − t)α

≤
F

Γ(α)

ǫΓ(α)

2F
+

F

αΓ(α)

ǫαΓ(α)

2F
=

ǫ

2
+

ǫ

2
= ǫ.

Case 3. t0 = 0, t ∈ (0, 1]

|Tu(t) − Tu(0)| =
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds

<
F

Γ(α)

∫ t

0
(t − s)α−1ds =

F

Γ(α)

tα

α
.

Given ǫ > 0, let

δ =

(

ǫαΓ(α)

F

)
1
α

.

Then when 0 < t < δ, we have

|Tu(t) − Tu(0)| <
F

αΓ(α)

ǫαΓ(α)

F
= ǫ.

Hence, we have proved that for u ∈ P , we have Tu(t) ∈ C[0, 1]. Therefore,
T : P → P.

Step 2. Next, we prove that the operator T : P → P is completely
continuous.

Let u0 ∈ P and ‖u0‖ = a0. For u ∈ P and ‖u − u0‖ < 1, we have
‖u‖ < 1 + a0 := a. By assumption (A1), we know that f(t, u(t)) is uniformly
continuous on [0, 1] × [0, a].
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Therefore, given any ǫ > 0, there exists δ > 0 and δ < 1, such that when
|u(t)−u0(t)| < δ, we have |f(t, u(t))−f(t, u0(t))| < ǫ

F1
, where F1 is the constant

in (5).

If ‖u − u0‖ < δ, then u(t), u0(t) ∈ [0, a] and |u(t) − u0(t)| < δ, for any
t ∈ [0, 1], then we have

|f(t, u(t)) − f(t, u0(t))| <
ǫ

F1
, ∀ t ∈ [0, 1]. (9)

It follows from (9) and assumption (A2) that

∣

∣Tu(t) − Tu0(t)
∣

∣ ≤
1

Γ(α)

∫ t

0
(t − s)α−1

∣

∣f(s, u(s)) − f(s, u0(s))
∣

∣ds

+
∣

∣g

(

1

Γ(α − 1)

∫ 1

0
(1 − s)α−2f(s, u(s))ds

)

− g

(

1

Γ(α − 1)

∫ 1

0
(1 − s)α−2f(s, u0(s))ds

)

∣

∣

<
ǫ

F1

[

1

Γ(α)

∫ t

0
(t − s)α−1ds +

L

Γ(α − 1)

∫ 1

0
(1 − s)α−2ds

]

=
ǫ

F1

[

tα

αΓ(α)
+

L

(α − 1)Γ(α − 1)

]

≤
ǫ

F1

[

1

αΓ(α)
+

L

Γ(α)

]

=
ǫ

F1
F1 = ǫ.

Then

‖Tu − Tu0‖ = max
t∈[0,1]

∣

∣Tu(t) − Tu0(t)
∣

∣ < ǫ.

Therefore, T : P → P is continuous.

Let Ω be a bounded set in P , i.e., Ω := {u ∈ P : ‖u‖ < M}, where M is a
positive constant. Let F = max(t,u)∈[0,1]×[0,M ] f(t, u(t)) + 1.

Since g is non-decreasing, we have

∣

∣Tu(t)
∣

∣ <
F

Γ(α)

∫ t

0
(t − s)α−1ds + g

(

F

Γ(α − 1)

∫ 1

0
(1 − s)α−2ds

)

=
F

Γ(α)

tα

α
+ g

(

F

Γ(α − 1)

1

α − 1

)

≤
F

αΓ(α)
+ g

(

F

Γ(α)

)

Then

‖Tu‖ = max
t∈[0,1]

∣

∣Tu(t)
∣

∣ <
F

αΓ(α)
+ g

(

F

Γ(α)

)
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for any u ∈ Ω.

Hence T (Ω) is bounded.

From the proof in Step 1, we can easily see that for each u ∈ Ω, given
ǫ > 0, there exists δ > 0, such that, if t1, t2 ∈ [0, 1], and 0 < t2 − t1 < δ, then
∣

∣Tu(t2)−Tu(t1)
∣

∣ < ǫ. Therefore, T (Ω) is equicontinuous. By the Arzela-Ascoli
Theorem, T : P → P is completely continuous.

Step 3. Let Ω1 = {u ∈ P : ‖u‖ < r}, where r is the constant chosen in the
beginning of this section. For u ∈ ∂Ω1, we have ‖u‖ = r and 0 ≤ u(t) ≤ r, for
t ∈ [0, 1]. It follows from assumption (A1), (A3) and (A5) that

Tu(1) =
1

Γ(α)

∫ 1

0
(1 − s)α−1f(s, u(s))ds

+ g

(

1

Γ(α − 1)

∫ 1

0
(1 − s)α−2f(s, u(s))ds

)

≥
r

(L1 + L2)

1

Γ(α)

∫ 1

0
(1 − s)α−1ds + g

(

r

(L1 + L2)Γ(α − 1)

∫ 1

0
(1 − s)α−2ds

)

=
r

(L1 + L2)αΓ(α)
+ g

(

r

(L1 + L2)(α − 1)Γ(α − 1)

)

=L1
r

L1 + L2
+ g

(

L2
r

L1 + L2

)

.

It follows from the discussion after assumption (A3) that L2
r

L1+L2
< N1, and

we have g
(

L2
r

L1+L2

)

≥ L2
r

L1+L2
.

Therefore,

Tu(1) ≥ L1
r

L1 + L2
+ g

(

L2
r

L1 + L2

)

≥ L1
r

L1 + L2
+ L2

r

L1 + L2
= r.

Then ‖Tu‖ ≥ ‖u‖ on ∂Ω1.

Similarly, let Ω2 = {u ∈ P : ‖u‖ < R}, where R is the constant chosen in
the beginning of this section. For u ∈ ∂Ω2, we have ‖u‖ = R and 0 ≤ u(t) ≤ R,

for t ∈ [0, 1]. It follows from assumptions (A1), (A3) and (A4) that, for any
t ∈ [0, 1],

∣

∣Tu(t)
∣

∣ ≤
1

Γ(α)

R

L1 + L2

∫ t

0
(t − s)α−1ds

+ g

(

R

L1 + L2

1

Γ(α − 1)

∫ 1

0
(1 − s)α−2ds

)

=
1

Γ(α)

R

(L1 + L2)

tα

α
+ g

(

R

L1 + L2

1

Γ(α − 1)

1

α − 1

)
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≤
L1R

L1 + L2
+ g

(

L2R

L1 + L2

)

.

It follows from the discussion after assumption (A3) that L2
R

L1+L2
> N2, and

we have g
(

L2
R

L1+L2

)

≤ L2
R

L1+L2
.

Therefore,
∣

∣Tu(t)
∣

∣ ≤ L1
R

L1 + L2
+ g

(

L2
R

L1 + L2

)

≤ L1
R

L1 + L2
+ L2

R

L1 + L2
= R.

Then ‖Tu‖ ≤ ‖u‖ on ∂Ω2.

By Lemma 4, we complete the proof of theorem.
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