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Abstract: Newton’s algorithm and some of its variations are often used to find
global minima of real valued functions. We propose another such variation and
prove its local quadratic convergence. We combine this with Armijo type line
search method to produce global convergence, which is eventually quadratic, for
the important class of strictly convex functions. Computational performance
on some standard test problems is presented, which shows that the proposed
model may be viable.
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1. Introduction

Let f : R
n → R and consider the problem of minimizing f(x):

min
x∈Rn

f(x). (1.1)

Given x0 ∈ R
n, most algorithms generate a sequence of points

xi+1 = xi + λipi, i ≥ 0,

where λi is the stepsize chosen along the direction pi (Ortega and Rheinboldt
[12]). If f(x) is differentiable, then pi is a descent direction if ∇f(xi)

T pi < 0
and in this case f(x) decreases in a neighborhood of xi along pi. The sequence
{f(xi)} so generated is decreasing, and if f(x) has a minimizer x∗, then xi → x∗
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under appropriate conditions.

If f(x) is twice continuously differentiable, the well known Newton’s algo-
rithm (Ortega and Rheinboldt [12]) is given by

xi+1 = xi − {∇2f(xi)}
−1∇f(xi), i ≥ 0, (1.2)

assuming ∇f(xi) 6= 0, the algorithm terminating otherwise. In this case λi ≡ 1
and pi = −{∇2f(xi)}

−1∇f(xi). This requires that the Hessian ∇2f(xi) must
be invertible. Moreover, if the Hessian is positive definite, then pi is a descent
direction. Algorithm (1.2) does not use this fact however, and the sequence
{f(xi)} need not be decreasing. If f(x) has a minimizer x∗ in an open convex
set D, ∇f(x∗) = 0 and if ∇2f(x∗) is positive definite, then algorithm (1.2)
guarantees (with additional strong conditions) convergence of the sequence {xi}
to x∗ quadratically. One of the conditions is that x0 be sufficiently close to x∗ so
that the convergence is essentially local. To relax this condition and to insure
one has global convergence, algorithm (1.2) is modified as

xi+1 = xi − λi{∇
2f(xi)}

−1∇f(xi), i ≥ 0, (1.3)

so that the stepsize λi is not always one, but chosen carefully by using one of
several line search methods.

In practice however, one does not know a priori if the sequence of Hessians
{∇2f(xi)} will be positive definite for every i and algorithm (1.2) (as well as
(1.3)) may very well fail. One alternative, see Dennis and Schnabel [11], would
be to check if ∇2f(xi) is positive definite for each i using its Cholesky decom-
position or other means, and if it is not, to use ∇2f(xi) + µiI instead, where µi

is a carefully chosen real number and I is the n × n identity matrix.

In this paper we suggest dispensing with the checking of the Hessian at
each iteration. We also suggest using µi = ‖∇f(xi)‖ and replacing the Hessian
∇2f(xi) by the matrix A(xi) = ∇2f(xi) + ‖∇f(xi)‖I in algorithms (1.2) and
(1.3). Admittedly there is still no guarantee that A(xi) will always be positive
definite; however, we are encouraged by our computational experience (Sec-
tion 4) that the modified algorithm is quite viable and works especially well
when algorithm (1.3) fails. One reason why this happens may be that since
‖∇f(xi)‖ → 0 as xi → x∗, and quadratically so if xi converges quadratically, in
the vicinity of x∗, A(xi) closely mimics the behavior of the Hessian. Our expe-
rience with other choices for µi such as µi = 2−i has not been very satisfactory
often resulting in failure.

Instead of using ‖∇f(xi)‖I, more generally, one could define

A(xi) = ∇2f(xi) + E(xi),

where E(xi) is a continuous positive definite symmetric matrix for xi 6= x∗ such



SOME REMARKS ON NEWTON’S ALGORITHM 225

that E(x∗) = 0. Then A(xi) is positive definite for a large class of functions
(such as strictly convex functions) and the Modified Newton’s Algorithm

xi+1 = xi − {A(xi)}
−1∇f(xi), (1.4)

is well defined at all points. We shall prove in Theorem 2.1 that with roughly
the same conditions as are required for quadratic convergence of the Newton’s
algorithm (1.2), the modified algorithm (1.4) guarantees local quadratic con-
vergence as well.

Algorithm (1.4) is also essentially local, and one could use as in (1.3), a
line search method to determine an appropriate stepsize λi to obtain global
convergence. In this paper we suggest the use of a backtracking line search
method generally known as the Armijo method or Armijo-Goldstein method
[1]. Using this technique, in Theorem 3.3 we prove that the algorithm

xi+1 = xi − λi {A(xi)}
−1∇f(xi), (1.5)

guarantees global convergence under appropriate conditions. More importantly,
in the case of strictly convex functions, the algorithm morphs itself into algo-
rithm (1.4) in the vicinity of x∗, thus guaranteeing eventual quadratic conver-
gence.

Newton’s method as well as its modifications require computation of deriva-
tives, viz., Hessians and gradients throughout the course of an algorithm. Ad-
mittedly, these are expensive both in computation as well as computer storage
requirements. Where a code for the Hessian or gradient is not readily avail-
able, one can use numerical approximations or symbolic derivatives available
through several software packages such as Mathematica, Maple, Macsyma, Mat-
lab. A more promising new field is that of automatic differentiation where one
uses computational representation of a function to produce exact values of the
derivatives. The interested reader is referred to [2]-[9].

We use the Euclidean norm on R
n. Real valued functions are denoted by

lower case letters. We use upper case for operators F : R
n → R

m, and in such
cases use the operator norm. We write fi for f(xi), f∗ for f(x∗), pi for p(xi),
Ai for A(xi), etc. We say F is Lipschitz continuous on D ⊂ R

n (and write F ∈
LipB(D)) if

∀x, y ∈ D, ‖F (y) − F (x)‖ ≤ B‖y − x‖, (1.6)

for some constant B > 0. In particular, if ∇2f(x) ∈LipB(D), an important
consequence of Taylor’s theorem and (1.6) is the inequality

∀x, y ∈ D, ‖∇f(x) −∇f(y)−∇2f(y)(x − y)‖ ≤
1

2
B‖x − y‖2. (1.7)
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2. Convergence of Modified Newton’s Algorithm

In this section we prove that the algorithm (1.4) also converges quadratically
under conditions that are very similar to those of algorithm (1.2). This will be
useful in Theorem 3.3 where we prove that algorithm (1.5) converges globally
with eventual quadratic convergence. See also Ortega and Rheinboldt [12].

Theorem 2.1. Let f : R
n → R be twice continuously differentiable on a

convex set D ⊂ R
n. Suppose that the following conditions hold:

1. There exists x∗ ∈ D such that ∇f∗ = 0 and ∇2f∗ is positive definite.

2. ∇2f(x) ∈ LipK(D).

3. There exists an n× n symmetric matrix E(x), continuous on D, positive
definite for x 6= x∗ such that E(x∗) = 0, and E(x) ∈ LipC(D).

4. There exists λ > 0 such that ∀x, y ∈ D,λxT x ≤ xT∇2f(y)x.

5. Let B = K+C and δ = 2λ/(B+C). Let N = N(x∗, δ) = {x : ‖x − x∗‖ <
δ}, N ⊂ D and let x0 ∈ D. If ∇f(xi) = 0, stop, otherwise define {xi}
inductively by (1.4) where

A(x) = ∇2f(x) + E(x).

Then:

1. x∗ is a local minimizer of f , x0 ∈ N(x∗, δ) ⇒ {xi} ⊂ N(x∗, δ) and xi →
x∗, and the rate of convergence is quadratic.

2. ‖∇fi‖ → 0 quadratically.

Proof. We assume the algorithm does not terminate. Since

λxT x ≤ xT (∇2fi)x + xT (Ei)x = xT Aix,

for all x ∈ D, it follows that ‖Ai‖ ≥ λ and that ‖Ai
−1‖ ≤ 1/λ.

Since B = K + C, it is clear that A ∈ LipB(D) and we have,

xi+1 − x∗ = xi − x∗ − A−1

i

(

∇fi −∇f∗

)

= A−1

i

{

Ai(xi − x∗) −
(

∇fi −∇f∗

)}

,

‖xi+1 − x∗‖ = ‖A−1

i ‖‖Ai(xi − x∗) −∇fi + ∇f∗‖

≤ λ−1‖Ai(xi − x∗) −∇fi + ∇f∗‖. (2.1)
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But from (1.7) we have

‖∇f∗ −∇fi − Ai(x
∗ − xi)‖ ≤ [(B + C)/2] ‖x∗ − xi‖

2, (2.2)

and substituting this in (2.1),

‖xi+1 − x∗‖ ≤ [(B + C)/2λ] ‖x∗ − xi‖
2.

Since δ = 2λ/(B + C), we get

‖xi+1 − x∗‖ ≤ δ−1 ‖xi − x∗‖2, (2.3)

which shows that xi ∈ N ⇒ xi+1 ∈ N. In particular, x0 ∈ N ⇒ {xi} ⊂ N.

Finally, let ei = δ−1‖xi − x∗‖ so that from (2.3),

ei+1 = δ−1‖xi+1 − x∗‖ ≤ e2
i ⇒ ei ≤ (e0)

2i

.

But x0 ∈ N ⇒ e0 < 1 and this shows ei → 0 and that the rate of convergence
is quadratic.

Obviously ∇fi → 0. From equation (1.4), Ai(xi+1 −xi)+∇fi = 0. It follows
from (2.2) that

‖∇fi+1‖ = ‖∇fi+1 −
(

∇fi + Ai(xi+1 − xi)
)

‖ ≤ ((B + C)/2)‖xi+1 − xi‖
2

≤ ((B + C)/2)‖A−1

i ‖2‖∇fi‖
2 ≤ (1/λδ)‖∇fi‖

2,

so that ∇fi → 0 quadratically completing the proof.

3. Line Search Methods and the Modified Newton’s Algorithm

In what follows given x ∈ R
n we call p ∈ R

n gradient related if
∣

∣

∣

∣

∣

∇f(x)T p

‖p‖

∣

∣

∣

∣

∣

≥ σ(‖∇f(x)‖), (3.1)

where σ : R → R is a forcing function, that is, σ(0) = 0, σ(x) > 0 ∀x > 0, and
σ(xi) → 0 ⇒ xi → 0 (Ortega and Rheinboldt [12]). If pi is normalized so that
‖pi‖ = 1, equation (3.1) can be rewritten as

∣

∣

∣

∣

∇f(x)T p

∣

∣

∣

∣

≥ σ(‖∇f(x)‖). (3.2)

The following theorem is due to Wolfe [13], [14] and usually proved using
Wolfe’s or equivalent conditions (Dennis and Schnabel [11]). We give a brief
proof using the Armijo backtracking line search method.

Theorem 3.1. Let f : R
n → R be continuously differentiable, x0 ∈ R

n,
S = {x|f(x) ≤ f(x0)}, a level set of f . Let ∇f ∈ LipK(S). Assume that
δ ∈ (0, 1), λ̄, {λ̄i}i≥1 be positive real numbers such that λ̄i ≥ λ̄ > 0. Let {p(x)}
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be a sequence of gradient related descent directions and define the sequence
{xi} as follows:

If ∇f(xi) = 0, stop. Else define

xi+1 = xi + λipi,

where the stepsize λi = max
j

{

2−j λ̄i

}

is chosen so that:

fi − fi+1 ≥ δλi(−∇fT
i pi). (3.3)

Then either

1. f(x) is unbounded below on S or,

2.
∇fT

i pi

‖pi‖
→ 0 and if {xi} has a limit point x∗, ∇f∗ = 0.

Proof. If ∇fi = 0 there is nothing to prove, so assume the contrary. Without
loss of generality we can assume pi is normalized so that ‖pi‖ = 1. Since pi is a
descent direction, ∇fT

i pi < 0. An application of (1.7) shows
∣

∣f(xi + λipi) − f(xi) −∇fiλipi

∣

∣ ≤ (K/2)‖λipi‖
2 = (K/2)λ2

i ,

whence

fi − f(xi + λipi) ≥ λi

[

−∇fT
i pi − (K/2)λi

]

= λi

[

− δ∇fT
i pi − (1 − δ)∇fT

i pi − (K/2)λi

]

≥ λi

[

− δ∇fT
i pi

]

. (3.4)

Hence fi ≥ fi+1, provided −(1 − δ)∇fT
i pi − (K/2)λi ≥ 0, that is,

λi ≤
2(1 − δ)

K
(−∇fT

i pi), (3.5)

which is satisfied for sufficiently small λi. Hence, the sequence {fi} is decreasing.

By the choice of λi, either λi = λ̄i ≥ λ̄ > 0, or 2λi violates inequality (3.5),
that is, 2λi > (2(1 − δ)/K) (−∇fT

i pi). It follows that

λi ≥ min
(

λ̄,
(1 − δ)

K
(−∇fT

i pi

))

. (3.6)

From (3.4) we also have that

f(x0) − fi =

i−1
∑

j=0

f(xj) − f(xj+1) ≥ δ

i−1
∑

j=0

λj

(

−∇f(xj)
T pj

)

.

Hence, either f is unbounded below on S, or
∑

i

λi

(

−∇fT
i pi

)

converges, that
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is,

λi

(

−∇fT
i pi

)

→ 0.

From (3.6),

0 = lim
i→∞

λi

(

−∇fT
i pi

)

≥ min
(

λ̄
(

−∇fT
i pi

)

,
(1 − δ)

K
(−∇fT

i pi)
2
)

≥ 0,

that is,

∇fT
i pi → 0,

and this proves the first part of the second conclusion since pi is assumed to
be normalized. Since pi is gradient related, σ(‖∇fi‖) → 0 for some forcing
function σ. It is obvious that if {xi} has a limit point x∗, ∇f∗ = 0, completing
the proof.

The following theorem is an adaptation of an important theorem due to
Dennis and Moré [10], and is crucial for much of what follows. Although their
original proof is in the context of Wolfe conditions, we prove it for backtracking
line search algorithm (1.5).

Theorem 3.2. Let:

1. D ⊆ R
n be open and convex and let f : D → R be twice continuously

differentiable on D with a minimizer x∗. Let ∇2f∗ be positive definite and
∇2f ∈ Lipγ1

(D).

2. For x ∈ D, let E(x) be an n × n symmetric, continuous, positive definite
matrix for x 6= x∗ with E∗ = 0 and let E(x) ∈ Lipγ2

(D).

3. Let 0 < δ < (1/2), λ̄, {λ̄i}i≥1 be positive real numbers such that λ̄i ≥ λ̄ >
0. Let {pi} be a sequence of gradient related descent directions and define
{xi}, i ≥ 0 by

xi+1 = xi + λipi,

where λi = max
j≥1

{2−j+1} satisfies fi − fi+1 ≥ −δλi∇fT
i pi.

4. Assume that xi → x∗,

lim
i→∞

‖∇fi +
(

∇2fi + Ei

)

pi‖

‖pi‖
= 0. (3.7)

Then there exists i0 such that i ≥ i0 ⇒ λi = 1, that is, xi+1 = xi + pi.
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Proof. We assume that xi → x∗. Since ∇2f∗ is positive definite, there exists
a neighborhood N(x∗) such that for x ∈ N, ∇2f is uniformly positive definite.
Hence, ∃µ, ν > 0 and such that for all x, y ∈ N ,

µ ‖x‖2 ≤ xT∇2f(y)x ≤ ν‖x‖2. (3.8)

Let A(x) = ∇2f(x) + E(x). Since E(x) is bounded on N , there exists κ
such that sup

x∈N

‖E(x)‖ ≤ κ. Then from (3.8)

∀x, y ∈ N,µ‖x‖2 ≤ xT A(y)x ≤ (ν + κ)‖x‖2. (3.9)

Let γ = γ1 + γ2. By assumptions 1 and 2, A(x) ∈ Lipγ(D), that is,

∀x, y ∈ D, ‖A(y) − A(x)‖ ≤ γ‖y − x‖. (3.10)

Let

σi =
‖∇fi + Aipi‖

‖pi‖
.

We have

−∇fT
i pi = pT

i Ai pi −
(

∇fi + Aipi

)T
pi

≥ µ‖pi‖
2 − σi‖pi‖

2

= (µ − σi) ‖pi‖
2 (3.11)

Also,

σi → 0 ⇒ ∃ i0 such that ∀ i ≥ i0, σi ≤
1

2
µ.

Hence for such i, from (3.11)

1

2
µ ‖pi‖ ≤

(

−∇fT
i pi

‖pi‖

)

. (3.12)

In particular, we have by Theorem 3.1 and (3.11) that

pi → 0. (3.13)

For all i ≥ i0, there exists zi in the line segment [xi, xi + pi] such that

f(xi + pi) − fi = ∇fT
i pi +

1

2
pT

i ∇
2f(zi)pi.

Hence,

f(xi + pi) − fi −
1

2
∇fT

i pi

=
1

2

(

∇fi + ∇2f(zi)pi

)T
pi

=
1

2

(

∇fi + Aipi

)T
pi +

1

2
pT

i

(

∇2f(zi) − Ai

)

pi
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=
1

2

(

∇fi + Aipi

)T
pi +

1

2
pT

i

(

A(zi) − Ai − E(zi)
)

pi

≤
1

2
‖∇fi + Aipi‖ ‖pi‖ +

1

2
γ ‖zi − xi‖ ‖pi‖

2 +
1

2
‖E(zi)‖ ‖pi‖

2

by Cauchy-Schwarz inequality and (3.10).

Now zi ∈ [xi, xi + pi] implies ‖z − xi‖ ≤ ‖pi‖. Further, since xi → x∗, we
have zi → x∗ and ‖E(zi)‖ → ‖E(x∗)‖ = 0. Hence,

f(xi + pi) − fi −
1

2
∇fT

i pi ≤
1

2
(σi + γ‖pi‖) ‖pi‖

2 +
1

2
‖E(zi)‖ ‖pi‖

2. (3.14)

Since σi, pi, ‖E(zi)‖ all converge to 0, we can, without loss of generality, assume
that for i ≥ i0,

σi + γ‖pi‖ + ‖E(zi)‖ ≤ µ(
1

2
− δ). (3.15)

Hence, it follows from (3.12), (3.14), and (3.15) that

f(xi + pi) − fi ≤
1

2
∇fT

i pi +
1

2

(

µ
(1

2
− δ
)

·
(−2∇fT

i pi)

µ

)

=
1

2
∇fT

i pi −
1

2
(1 − 2δ)∇fT

i pi

=
1

2
∇fT

i pi

(

1 − (1 − 2δ)
)

= δ∇fT
i pi.

It follows that i ≥ i0 ⇒ λi = 1 completing the proof.

We now prove the main theorem of this paper.

Theorem 3.3. Let D ⊂ R
n be an open convex set, f : D → R, strictly

convex and twice continuously differentiable on D and continuous in the closure
of D. Given x0 ∈ D, let

S = {x | f(x) ≤ f(x0)}

be the level set of f . Assume that ∇2f(x) ∈ Lipγ(S).

1. Suppose that f has a (unique) minimizer x∗ ∈ D and let ∇2f∗ be positive
definite.

2. Let E(x) be a symmetric continuous n × n matrix for x ∈ S, positive
definite for all x ∈ S, x 6= x∗, and satisfying E(x∗) = 0. Assume further
that E(x) ∈Lipµ(S) and define

Ai = ∇2fi + Ei.

3. Let 0 < δ < (1/2), λ̄, {λ̄i}i≥1 be positive real numbers such that λ̄i ≥ λ̄ >
0 and let x0 ∈ D. For i ≥ 0, if ∇fi = 0 stop. Else define {xi} inductively
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by

xi+1 = xi + λipi, pi = −A−1

i ∇fi,

where λi = max
j≥1

{2−j+1} satisfies fi − fi+1 ≥ δ λi

(

−∇fT
i pi

)

.

Then xi → x∗, eventually quadratically, that is, xi → x∗ and there exists a
neighborhood N(x∗) of x∗ and i0 such that for all i ≥ i0, xi ∈ N(x∗), limk xi0+k =
x∗ and the convergence is quadratic.

Proof. Since x∗ is the unique minimizer of f , the level set S∗ = {x : f(x) ≤
f∗} = {x∗} is bounded. Hence, every level set of f , in particular S is bounded
(see Ortega and Rheinboldt [12]), and therefore compact. Hence, ‖∇2f(x)‖ is
bounded on S, say by κ and ∇f(x) ∈ Lipκ(S). By Theorem 3.1, the sequence
{f(xi)} is decreasing and the limit points of {xi} are stationary points and
hence global minimizers. Since x∗ is the unique global minimizer of f , it is the
only limit point of {xi}. That is, xi → x∗.

It remains to show that the convergence is eventually quadratic. By the
strict convexity of f , the Hessian ∇2f(x) is positive semi-definite on D, and
since E(x), x 6= x∗ is positive definite on S, Ai is positive definite on S, and
since S is compact, Ai is uniformly positive definite on S. Hence, pi is gradient
related (Ortega and Rheinboldt [12]). Clearly

lim
i→∞

‖∇fi +
(

∇2fi + Ei

)

pi‖

‖pi‖
= lim

i→∞

‖∇fi + Ai pi‖

‖pi‖

= lim
i→∞

‖∇fi − Ai(Ai)
−1∇fi‖

‖pi‖
≡ 0

and this shows that the hypotheses of Theorem 3.2 are satisfied. Thus, there
exists a neighborhood N1(x

∗) and i0 such that for i ≥ i0, xi ∈ N1(x
∗) and

xi+1 = xi + pi = xi − A−1

i ∇fi.

Since A(x) ∈ Lipµ+γ(S), the conditions of Theorem 2.1 apply in N1(x
∗). Thus,

there exists another neighborhood N(x∗) ⊆ N1(x
∗) and i1 ≥ i0 such that

xi+i1 ∈ N(x∗) and xi+i1 → x∗ quadratically completing the proof.

4. Computational Experience

In this section we describe our computational experience with algorithm (1.5)
which we will refer to as Modified Newton’s Algorithm henceforth. For compar-
ison purposes, we also include the performance of algorithm (1.3) which will
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simply be referred to as Newton’s Algorithm, and occasionally the standard
Newton’s Algorithm (1.2) (λi = 1). In the case of algorithm (1.5) we have cho-
sen A(xi) = ∇2fi + ‖∇fi‖I, and we have used Armijo backtracking line search
to determine λi for both (1.3) and (1.5).

We tested the performance of the two algorithms on the following list of
well known test problems: Six Hump Camel Back function, Goldstein-Price
function, Extended Rosenbrock function, Beale function, and Branin function.

When the Hessians {∇2f(xi)} are known to be positive definite, the pre-
ferred algorithm would naturally be algorithm (1.2). Not surprisingly it did
better than algorithm (1.5) in such cases. For instance, in the case of the ordi-
nary (n = 2) Rosenbrock function, with the starting point at (-1.5, 2), Newton’s
Algorithm (1.2) with λi = 1 reached the minimum (1.0, 1.0) in seven iterations;
algorithm (1.3) took 23 iterations while the Modified Newton’s algorithm (1.5)
took 30 iterations. For this reason this function is not considered here.

Often the Hessian may be indefinite at the starting point. This is the
case with the Six Hump Camel Back function where with starting point (-0.5,
0.2) algorithm (1.3) converges to a saddle point but algorithm (1.5) succeeds in
reaching the minimum (-0.09, 0.71). Similar situation occurs in Goldstein-Price
function with starting point (-0.5, 1) for which algorithm (1.3) fails to converge
while the algorithm (1.5) is able to find a local minimizer.

This situation need not improve even if the Hessian at the starting point is
positive definite. This is the case with the Extended Rosenbrock function, n = 4
and the Beale function. In both cases, as the tables below show, algorithm
(1.3) fails to converge while algorithm (1.5) succeeds in converging to a global
minimizer.

For each problem, we give a statement of the problem and a list of lo-
cal and global minimizers. A table provides the number of iterates computed,
and whether the algorithm resulted in a success or failure either due to non-
convergence or convergence to a point which is not a minimizer. We also indicate
whether ∇2f(x0) is positive definite or indefinite. In the case of algorithm (1.5)
when convergence takes place we indicate the iterate when quadratic conver-
gence has set (as predicted by Theorem 3.3) in italics.

We also provide a contour map showing the path traced by the iterates of
both algorithms. All problems were coded in Matlab using symbolic derivatives.
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Figure 1: Contour plot of Six Hump Camel Back function and the
trajectories taken by Newton’s and Modified Newton’s Algorithms

4.1. Six Hump Camel Back Function

f(x, y) = x2(4 − 2.1x2 + (x4/3)) + xy + y2(−4 + 4y2).

There are two global minimizers (−0.0898, 0.7126) and (0.0898, −0.7126) and
four local minimizers. At the starting point (-0.5,0.2), the Hessian ∇2f(x0) is
indefinite (Table 1).

4.2. Goldstein-Price Function

f(x, y) = [1 + (x + y + 1)2(19 − 14x + 3x2 − 14y + 6xy + 3y2)], ·
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Iter Newton ‖∇f‖ Modified Newton ‖∇f‖

0 (-0.5000, 0.2000) 3.43496 (-0.5000, 0.2000) 3.43496
2 (0.0176,-0.0215) 0.22373 (-0.0624, 0.9408) 5.75004
4 (0.0000,-0.0000) 0.00000 (-0.0907, 0.7300) 0.29280
5 (-0.0900, 0.7135) 0.01418
6 (-0.0898, 0.7127) 0.00004
7 (-0.0898, 0.7127) 0.00000

Saddle point: Global minimizer:
(0.0000,-0.0000) (-0.0898, 0.7127)

Indefinite Hessian

Table 1

Iter Newton ‖∇f‖ Mod. Newton ‖∇f‖

0 (-0.500, 1.000) 191838.1 (-0.500, 1.000) 191838.1
5 (0.151, 0.233) 2544.711 (-0.868,-0.170) 583.7683
9 (0.151, 0.233) 2544.711 (-0.603,-0.397) 1.9036
10 (0.151, 0.233) 2544.711 (-0.600,-0.400) 0.0431
11 (0.151, 0.233) 2544.711 (-0.600,-0.400) 0.0000
12 (0.151, 0.233) 2544.711 (-0.600,-0.400) 0.0000
13 (0.151, 0.233) 2544.711 (-0.600,-0.400) 0.0000
100 (0.151, 0.233) 2544.711
200 (0.151, 0.233) 2544.711

Fails to converge Local min.:
Indefinite Hessian (-0.600,-0.400)

Table 2

[30 + (2x − 3y)2(18 − 32x + 12x2 + 48y − 36xy + 27y2)].

There is one global minimizer x∗ = (0,−1) and several local minimizers. At
the starting point (-0.5,1), the Hessian ∇2f(x0) is indefinite (Table 2).
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Figure 2: Goldstein-Price function contour plot with the sequence of
iterates generated by Newton’s and the Modified Newton’s Algorithms

4.3. Extended Rosenbrock Function

f(x) =

3
∑

i=1

[(1 − xi)
2 + 100(xi+1 − x2

i )
2].

There is a global minimizer x∗ = (1, 1, 1, 1) and several local minimizers. At the
starting point x0 = (0,−2, 5, 2), the Hessian ∇2f(x0) is positive definite (Table
3).
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Iter. Newton ‖∇f‖ Modified Newton ‖∇f‖

0 ( 0.0,-2.0, 5.0, 2.0) 46438 (0.0,-2.0, 5.0, 2.0) 46438
10 ( 0.0,-0.3, 0.3,-0.2) 116.55 (0.0,-1.0, 1.4, 2.1) 40.97
20 (-0.0, 0.0, 0.0,-0.0) 5.96 (0.8, 0.6, 0.3, 0.1) 2.71
31 (-0.0, 0.0, 0.0,-0.0) 5.96 (1.0, 1.0, 1.0, 1.0) 0.19
32 (-0.0, 0.0, 0.0,-0.0) 5.96 (1.0, 1.0, 1.0, 1.0) 0.00
33 (-0.0, 0.0, 0.0,-0.0) 5.96 (1.0, 1.0, 1.0, 1.0) 0.00
34 (-0.0, 0.0, 0.0,-0.0) 5.96 (1.0, 1.0, 1.0, 1.0) 0.00
50 (-0.0, 0.0, 0.0,-0.0) 5.96
100 (-0.0, 0.0, 0.0,-0.0) 5.96
200 (-0.0, 0.0, 0.0,-0.0) 5.96

Fails to converge Global min.:
Indefinite Hessian (1.0, 1.0, 1.0, 1.0)

Table 3

Iter Newton ‖∇f‖ Modified Newton ‖∇f‖

0 (-0.50000,-0.60000) 18.709 (-0.50000,-0.60000) 18.709
3 (0.49733,-1.46749) 4.4324 (1.29874,-0.41934) 4.0250
6 (0.49733,-1.46749) 4.4324 (2.42156, 0.31968) 0.4860
9 (0.49733,-1.46749) 4.4324 (2.92658, 0.48217) 0.0536
11 (0.49733,-1.46749) 4.4324 (2.99873, 0.49971) 0.0011
12 (0.49733,-1.46749) 4.4324 (3.00000, 0.50000) 0.0000
100 (0.49733,-1.46749) 4.4324
200 (0.49733,-1.46749) 4.4324

Fails to converge Global minimizer:
Indefinite Hessian (3.00000, 0.50000)

Table 4

4.4. Beale Function

f(x, y) = [1.5 − x(1 − y)]2 + [2.25 − x(1 − y2)]2 + [2.625 − x(1 − y3)]2.

Global minimizer x∗ = (3, 0.5). The Hessian at the starting point ∇2f(x0) is
positive definite (Table 4).



238 M. Hendrata, P.K. Subramanian

Figure 3: Contour plot of Beale function and the trajectories taken by
Newton’s and Modified Newton’s Algorithms

4.5. Branin Function

f(x, y) =
[

y −
( 5.1

4π2

)

x2 +
5x

π
− 6
]2

+ 10
(

1 −
1

8π

)

cos x + 10.

There are several global minimizers including (−π, 12.275), (π, 2.275),
(9.42478, 2.475). The Hessian at the starting point ∇2f(x0) is positive defi-
nite (Table 5).
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Figure 4: Contour plot of Branin function and the trajectories taken
by Newton’s and the Modified Newton’s Algorithms

Iter Newton ‖∇f‖ Modified Newton ‖∇f‖

0 (2.0000,10.0000) 14.4606 (2.0000,10.0000) 14.4606
4 (3.1155, 2.9301) 1.4733 (1.9560, 6.7382) 6.9034
8 (3.1401, 2.3159) 0.0923 (2.8729, 3.7131) 2.4849
11 (3.1414, 2.2801) 0.0115 (3.1231, 2.3853) 0.1937
12 (3.1415, 2.2776) 0.0058 (3.1398, 2.2860) 0.0193
13 (3.1416, 2.2763) 0.0029 (3.1416, 2.2751) 0.0002
14 (3.1416, 2.2756) 0.0014 (3.1416, 2.2750) 0.0000
18 (3.1416, 2.2750) 0.0000

Global minimizer: Global minimizer:
(3.1416, 2.2750) (3.1416, 2.2750)

Table 5
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