THE FACTORIZATION OF
MONOTONE MORPHISM IN A TOPOS

Tao Lu
School of Mathematics
Huai Bei Normal University
Huai Bei, An Hui, 235000, P.R. CHINA
e-mail: lutao7@live.com

Abstract: In this paper, we investigate the factorization of a monotone
morphism between two partially ordered objects in an arbitrary elementary
topos. The factorization theorem in an arbitrary elementary topos is obtained.

AMS Subject Classification: 18B25, 06A15
Key Words: partial order object, monotone morphism, topos

1. Introduction and Preliminaries

The development of topos theory resulted from the confluence of two streams
of mathematical thought from the 20-th Sixties. The first of these is the de-
velopment of an axiomatic treatment of sheaf theory by Grothendieck. This
axiomatic development culminated in the discovery by Giraud that a category
is equivalent to a category of sheaves for a Grothendieck topology if and only
if it satisfies the conditions for being what is now called a Grothendieck topos.
The main purpose of the axiomatic development is to be able to define sheaf co-
homology. The second stream is Lawvere’s continuing search for a natural way
of founding mathematics (universal algebra, set theory, category theory, etc.)
on the basic notions of morphism and composition of morphisms. All formal
(and naive) presentations of set theory up to then had taken as primitives the
notions of elements and sets with membership as the primitive relation. Now
a topos can be considered both as a “generalized space” and as a “generalized

Received: June 11, 2010 © 2010 Academic Publications
universe of sets”. Topos theory unifies this two seemingly wholly distinct mathematical aspects.

Recall a topos \mathcal{E} is a category which has finite limits and every object of \mathcal{E} has a power object. For a fixed object A of category \mathcal{E}, the power object of A is an object PA which represents $\text{Sub}(- \times A)$, so that $\text{Hom}_{\mathcal{E}}(-, PA) \simeq \text{Sub}(- \times A)$ naturally. It says precisely that for any arrow $B' \xrightarrow{f} B$, the following diagram commutes, where φ is the natural isomorphism.

$$
\begin{array}{ccc}
\text{Hom}_{\mathcal{E}}(B, PA) & \xrightarrow{\varphi(A,B)} & \text{Sub}(B \times A) \\
\downarrow \text{Hom}_{\mathcal{E}}(f, PA) & & \downarrow \text{Sub}(f \times A) \\
\text{Hom}_{\mathcal{E}}(B', PA) & \xrightarrow{\varphi(A,B')} & \text{Sub}(B' \times A)
\end{array}
$$

Figure 1:

As a matter of fact, the category of sheaves of sets on a topological space is a topos. In particular, the category of sets is a topos. For details of the treatment of toposes and sheaves please see Johnstone [6], Mac and Moerdijk [10], Joyal and Tierney [8], Johnstone and Joyal [7]. For a general background on category theory please refer to [2], [9].

In [10], Lattice and Heyting Algebra objects in a topos are well defined. In this paper we develop our study in the more general and more natural context of partially ordered object and the factorization theorem in categorical sense. More details about lattice and locale please see [3], [4], [1], [5].

2. Main Results

Definition 1. (see [10]) A subobject $\leq_{L} \rightarrow L \times L$ is called an internal partial order on L, provided that the following conditions are satisfied

1) Reflexivity: The diagonal $L \xrightarrow{\delta} L \times L$ factors through $\leq_{L} \xrightarrow{\epsilon_{L}} L \times L$, as in

$$
\begin{array}{ccc}
L & \xrightarrow{\delta} & L \times L \\
\downarrow \epsilon_{L} & & \downarrow \leq_{L} \\
\leq_{L}
\end{array}
$$

Figure 2: Reflexivity
2) Antisymmetry: The intersection $\leq_L \cap \geq_L$ is contained in the diagonal, as in the following pullback

$$
\begin{array}{c}
\leq_L \cap \geq_L \rightarrow \leq_L \\
\downarrow \\
\leq_L \\
\downarrow \\
\geq_L \\
\downarrow \\
\geq_L \\
\downarrow \\
\leq_L \cap \geq_L \\
\downarrow \\
\leq_L \\
\downarrow \\
\geq_L \\
\downarrow \\
L \times L
\end{array}
$$

Figure 3: Antisymmetry

Here \geq_L is defined as the composite $\leq_L \xrightarrow{e_L} L \times L \xrightarrow{\pi} L \times L$ with τ as the twist map interchanging the factors of the product.

3) Transitivity: The subobject $C \xrightarrow{\langle \pi_1ev, \pi_2eu \rangle} L \times L$ factors through $\leq_L \xrightarrow{e_L} L \times L$, as in

$$
\begin{array}{c}
C \xrightarrow{\langle \pi_1ev, \pi_2eu \rangle} L \times L \\
\downarrow \\
\leq_L \\
\downarrow \\
\leq_L \\
\downarrow \\
C
\end{array}
$$

Figure 4: Transitivity

where C is the following pullback

$$
\begin{array}{c}
C \xrightarrow{\langle \pi_1ev, \pi_2eu \rangle} L \times L \\
\downarrow \\
\leq_L \\
\downarrow \\
\leq_L \\
\downarrow \\
C
\end{array}
$$

Figure 5: The definition of C

An object L endowed with an internal partial order \leq_L is called a partially ordered object.

Let L and M be two partially ordered objects. We can define the product of partially ordered object $L \times M$ of L and M as the product object $L \times M$ endowed with the “pointwise order” $\leq_L \times \leq_M \rightarrow L \times L \times M \times M \simeq L \times M \times L \times M$. Also, a subobject B of a partially ordered object (L, \leq_L) is again a partial order
object endowed with the induced partial order \leq_B, as in the pullback

$$
\begin{array}{c}
\leq_B \\
\downarrow \\
B \times B \\
\downarrow \\
\leq_L \\
\end{array}
\quad
\begin{array}{c}
L \times L \\
\end{array}
$$

Figure 6: The induced partial order

We now turn to the discussion of morphisms between partial order objects.

In [10], for morphisms $L \xrightarrow{f} M$ between two objects in a topos, $f \leq g$ is defined to be $L \xrightarrow{(f,g)} M \times M$ factors through $\leq_M \xrightarrow{e_M} M \times M$, as in

$$
\begin{array}{c}
\leq_M \\
\downarrow \\
\leq_M \\
\downarrow \\
e_M \\
\end{array}
\quad
\begin{array}{c}
(f,g) \\
\downarrow \\
M \times M \\
\end{array}
\quad
\begin{array}{c}
L \\
\end{array}
$$

Figure 7: The first definition of $f \leq g$

Lemma 2. Let L, M be two partially ordered objects with a pair of morphisms $L \xrightarrow{f} M$. Then $f \leq g$ if and only if $fr \leq gr$ for every morphism $A \xrightarrow{r} L$.

Proof. \Rightarrow Suppose $f \leq g$, then there exists a morphism $L \xrightarrow{k} \leq_M$ such that $(f,g) = e_M k$. So $(fr,gr) = (f,g)r = e_M kr$, which means the outer triangle of Figure 8 below is commutative, i.e., (fr,gr) factors through $\leq_M \xrightarrow{e_M} M \times M$.

$$
\begin{array}{c}
\leq_M \\
\downarrow \\
\leq_M \\
\downarrow \\
e_M \\
\end{array}
\quad
\begin{array}{c}
M \times M \\
\end{array}
\quad
\begin{array}{c}
L \\
\end{array}
$$

Figure 8: Equivalence of two definitions

\Leftarrow Indeed, in order to verify this, we can take the fixed identity morphism
Corollary 3. Let \(L, M \) be two partially ordered objects and \(f \) be a morphism. Then \(f \leq f \).

Proof. Since \(p_i \langle f, f \rangle = p_i \delta f \) with \(p_i : M \times M \to M \) \((i = 1, 2)\) being projections, \(\langle f, f \rangle = \delta f \). And by Definition 1, we know \(\delta \) factors through \(\leq \). It follows that the outer square is commutative as in the following Figure 9.

![Figure 9: Reflexivity of \(f \)](image)

So we have that \(\langle f, f \rangle \) factors through \(\leq M \), thus \(f \leq f \).

Corollary 4. Let \(L, M \) be two partially ordered objects and \(f, g, h \) morphisms between \(L \) and \(M \). Then \(f \leq g \) and \(g \leq h \) imply \(f \leq h \).

Corollary 5. Let \(L, M \) be two partially ordered objects and \(f : L \to M, g : M \to L \) be morphisms. Then \(f \leq g \) and \(g \leq f \) imply \(f = g \).

Proof. \(g \leq f \) implies that \(\langle g, f \rangle : L \to M \times M \) can be factored through \(\leq \), equivalently, \(\langle f, g \rangle \) can be factored through \(\geq \). Thus \(\langle f, g \rangle \) can be factored through \(\delta = \leq \cap \geq \). This shows \(f = g \).

The above argument shows that for two partially ordered objects \(L \) and \(M \), the relation \(\leq \) defined on the morphism set \(\text{Mor}(L, M) \) is a partial order relation.

Definition 6. (see [10]) Let \(L, M \) be two partially ordered objects in \(\mathcal{E} \). A morphism \(f : L \to M \) is called order-preserving or monotone if the composite
\[\leq_L \xrightarrow{e_L} L \times L \xrightarrow{f \times f} M \times M \] factors through \[\leq_M \], as in

\[\leq_L \xrightarrow{e_L} L \times L \quad f \times f \xrightarrow{e_M} M \times M \]

Figure 10: The definition of a monotone morphism

Lemma 7. A morphism \(L \xrightarrow{f} M \) between two partial ordered objects is order-preserving if and only if \(r \leq s \) implies \(fr \leq fs \) for every pair of parallel morphisms \(A \xrightarrow{r} L \).

Proof. \(\Rightarrow \) We first show \((fr, fs) = f \times f \langle r, s \rangle \). This may be pictured as in the following Figure 11, where \(p_1, p_2, \pi_1, \pi_2 \) are projections.

By the universal property of \(M \times M \), it follows that \(fp_i = \pi_i f \times f, i = 1, 2 \). Similarly, \(r = p_1 \langle r, s \rangle, s = p_2 \langle r, s \rangle \). Then \(fp_1 \langle r, s \rangle = \pi_1 f \times f \langle r, s \rangle, \) so \(fr = \pi_1 f \times f \langle r, s \rangle, fs = \pi_2 f \times f \langle r, s \rangle \). By the universal property of \(M \times M \), we also have \(fr = \pi_1 \langle fr, fs \rangle, fs = \pi_2 \langle fr, fs \rangle \). So, \(\pi_1 < fr, fs >= \pi_1 f \times f \langle r, s \rangle, \pi_2 \langle fr, fs \rangle = \pi_2 f \times f \langle r, s \rangle \), thus \(\langle fr, fs \rangle = f \times f \langle r, s \rangle \).

Now suppose \(r \leq s \), then there exists a morphism \(A \xrightarrow{r} \leq L \) with \(\langle r, s \rangle = e_L k \). It follows that the left triangle of in Figure 12 is commutative. Since \(f \) is monotone, the right square of the Figure 12 is commutative, i.e., there exists \(\leq_L \xrightarrow{m} \leq_M \) such that \(f \times fe_L = e_M m \). So \(\langle fr, fs \rangle = f \times f \langle r, s \rangle = f \times fe_L k = e_M mk \), which means the outer of the Figure 12 is commutative.
Figure 12: The relation between $\langle fr, fs \rangle$ and e_M

Thus, $\langle fr, fs \rangle$ factors through $\leq_M \overset{e_M}{\to} M \times M$.

\Leftarrow It suffices to show there exists $\leq_L \overset{m}{\to} \leq_M$ with $f \times fe_L = e_M m$, as in the Figure 13.

Figure 13: The existence of m

By Lemma 2, it is obvious that m exists.

It is well known that the image of an arrow f is the smallest subobject (of the codomain f) through which f can factor. And the factorization of f is unique “up to isomorphism” as the following two lemmas show.

Lemma 8. (see [10]) In a topos, every morphism f has an image m and factors as $f = me$, with e epi.

Lemma 9. If $f = me$ and $f' = m'e'$ with m, m' monic and e, e' epi, then each map of the arrow f to the arrow f' extends to a unique map of m, e to m', e'.

Proof. A map of the arrow f to the arrow f' is a pair of arrows r, t which make the following square commute.
Figure 14:
Given such a pair of arrows and the two $e - m$ factorizations, it suffices to construct a unique arrow s from m to m' which makes both squares in the following diagram commute.

![Diagram](image)

Figure 15:
Take the pullback P of t along m', as is shown in the above diagram, then l is monic. By the definition of the pullback and Figure 14, then, there exists the unique h such that f factors through l, i.e., $f = lh$. By the minimal property of the image, then there exists one unique arrow k, such that $m = lk$. Because l is monic, then $h = ke$. Let $s = nk$, then tm factors through C' via s, as $tm = m's$, and the arrow s is unique because m' is monic. Moreover, we have $se = e'r$ for the same reason, which means the left hand square of the above diagram also commutes.

Theorem 10. If a monotone morphism $L \rightarrow M$ between two partially ordered objects factors as $f = me$ with image m. Then m and e are monotone morphisms.

Proof. Given $L \rightarrow M$, which factors as $L \rightarrow I \rightarrow M$. The proof is just a matter of observing the corresponding partial order on I. Construct the following commutative Figure 16.
By the definition of product $L \times L, M \times M, I \times I$ with projections p_i, π_i, t_i ($i = 1, 2$) respectively, we have $fp_i = \pi_i f \times f$, $ep_i = t_i e \times e$, $mt_i = \pi_i m \times m$, i.e., the front, back, bottom faces of the right side of the diagram are all commutative. Then, $\pi_i f \times f = mep_i = \pi_i m \times m \cdot e \times e$, so $f \times f = m \times m \cdot e \times e$, which means the middle triangle is commutative. Since the smallestness of $m \times m$ is obvious, $f \times f = m \times m \cdot e \times e$ is again an epi-momo factorization, i.e., $m \times m$ is the image of $f \times f$.

We take \leq_I as the pullback of $I \times I \to M \times M$ along e_M, that is, $\leq_I = (I \times I) \cap \leq_M$. It is easy to prove that \leq_I is just both the induced partial order on I and the image of \leq_L. This shows the back and the bottom faces of the left side of the diagram are commutative, in other words, $\leq_I \xrightarrow{\pi_1} I \times M \times M$ and $\leq_L \xrightarrow{e_L} L \times L \xrightarrow{e \times e} I \times I$ factor through $\leq_M \xrightarrow{e_M} M \times M$ and $\leq_I \xrightarrow{\pi_I} I \times I$ respectively. So m, e are all monotone morphisms.

Acknowledgments

The author would like to thank the referee for his helpful suggestions.

The work is supported by the National Natural Science Foundation of (Grants No.10731050,60973156) and the Doctor Foundation(Grant No.600483) and Science Foundation of HuaiBei Normal University (Grant No.800623).

References

