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Abstract: Let X ⊂ Pn be an integral variety. For any P ∈ Pn the X-rank
rX(P ) is the minimal cardinality of a set S ⊂ X such that P ∈ 〈S〉. Here we
study the stratification of Pn when X is a Severi variety or a smooth variety
with only one apparent double point (OADP).
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*

Let X ⊆ Pn be an integral and non-degenerate m-dimensional variety defined
over an algebraically closed field K such that chark(K) = 0. For any P ∈ Pn

the X-rank rX(P ) of P is the minimal cardinality of a finite set S ⊂ X such
that P ∈ 〈S〉, where 〈 〉 denotes the linear span (see [3]). For any integer t
set E(X, t) := {P ∈ Pn : rX(P ) = t} and E(X,≥ t) := ∪x≥tE(X,x). The
s-th secant variety σs(X) ⊆ Pn of X is the closure in Pn of the union of all
(s − 1)-dimensional linear subspaces spanned by s points of X. Hence with
this convention σ1(X) = X and σ2(X) is the secant variety Sec(X) of X. For
any P ∈ Pn let bX(P ) denote the border X-rank of P , i.e. the first integer
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s > 0 such that P ∈ σs(X). Sometimes bX(P ) is called the secant X-rank of P .
Set G(X, t) := {P ∈ Pn : bX(P ) = t} and G(X,≥ t) := ∪x≥tG(X,x). Notice
that X = E(X, 1) = G(X, 1) for all X. Let τ(X) ⊆ Pn denote the tangent
developable of X, i.e. the closure in Pn of the union of all m-dimensional
tangent spaces TQX, Q ∈ Xreg. Notice that if X is smooth, then σ2(X)\τ(X) ⊆
E(X, 2). If X is smooth let G(X, 2)′ (resp. G(X, 2)′′) be the set of all P ∈ Pn

such that there are infinitely many lines (resp. at least two lines) D such that
P ∈ D and length(D ∩ X) ≥ 2. We have G(X, 2)′ ⊆ G(X, 2)′′ ⊆ σ2(X). If
dim(σ2(X)) = 2m + 1, then a dimentional count gives G(X, 2)′ $ σ2(X).

Theorem 1. Let X ⊂ Pn be one of the 4 Severi varieties (see [6], [4]).
Hence X is smooth, m ∈ {2, 4, 8, 16} and n = 3m/2 − 1. Then Sec(X) is
a cubic hypersurface with X as its singular locus, X = E(X, 1) = G(X, 1),
Sec(X) \ X = E(X, 2) = G(X, 2), Pn \ Sec(X) = E(X, 3) = G(X, 3) and
E(X,≥ 4) = G(X,≥ 4) = ∅.

Assume that X is OADP in the sense of [1]. Since X is smooth, σ2(X) \
τ(X) ⊆ E(X, 2). Fix P ∈ τ(X) ⊂ X. Since X is OADP, either rX(P ) ≥ 3
or P lies on infinitely many secant lines to X (see [1], statement i) at p. 480).
The latter occurs only on

Proposition 1. Assume that X ⊂ Pn, n = 2m + 1, is a smooth m-
dimensional OADP. Then dim(E(X, 3)) = n − 1, E(X, 3) ⊆ τ(X) and E(X, 3)
contains a non-empty open subset of τ(X).

All smooth OADP of dimension 2 and 3 are classified (see [1]). Using the
classification and a case-by-case analysis we are able to show that if m = 2
then E(X, 3) = τ(X) \ X (see Examples 1, 2 and 3 below). Then we consider
another OADP with m = 3: the Segre embedding of P1 ×P1 ×P1 (Example 4).
Motivated by this computation we raise the following question.

Question 1. Fix integers s ≥ 2 and mi ≥ 1, 1 ≤ i ≤ s. Set n :=
−1+

∏s
i=1

(m1 +1). Set X :=
∏s

i=1
Pmi embedded in Pn by the complete linear

system |OX(1, . . . , 1)|. Is rX(P ) = s for all P ∈ τ(X) \ X?

In the set-up of Question 1 the proof of Example 4 gives rX(P ) ≤ s and
that for every Q ∈ X there are infinitely many S ⊂ X∩TQX such that ♯(S) = s
and P ∈ 〈S〉.

Example 1. Here we assume that X is a del Pezzo surface of degree
5, i.e. it is isomorphic to the anticanonical model X ⊂ P5 of the blowing up
of P2 at 4 not collinear points. Fix Q ∈ X and P ∈ TQX \ X ∩ TQX. To
prove the inequality rX(P ) ≥ 3 (and hence that rX(P ) = 3 by [3], Proposition
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5.1) it is sufficient to prove the non-existence of infinitely many secant lines
to X containing P (see [1], i) at p. 480). Assume that this is the case and
call T ⊂ X the one-dimensional part of the entry locus of P . Fix a general
hyperplane H ⊂ P5 containing the line 〈{P,Q}〉. Since 〈{P,Q}〉 is tangent to
X at Q and X is cut out by quadrics, we have (〈{P,Q}〉)∩X)red = {Q}. Hence
Bertini’s Theorem gives the smoothness of the curve C := X ∩H. Thus C is a
rational normal curve of H. By construction P ∈ TQC\{Q}. Hence rC(P ) = 4
(see [2] or [3], Theorem 4.1). Since rC(P ) > 2 and any two tangent lines of C
are disjoint, we get (T ∩ H)red ⊆ {Q}. Varying H we get that T is a union of
lines through Q. There are only finitely many lines in X and even if Q is on
one of these lines, say R, we conclude, because P is not in all TAX, A ∈ R.

Example 2. Here we assume that X is the degree 4 rational normal
scroll S(2, 2), i.e. the embedding of X ∼= P1 × P1 into P5 induced by the
complete linear system |OX(1, 2)|. For any P ∈ X let FQ be the only line
contained in X and containing Q. Thus FQ is a fiber of one of the rulings
of X. Call CQ the fiber of the other ruling of X containing Q. The curve
CQ is embedded in P5 as a smooth conic. Set MQ := 〈FQ ∪ CQ〉. Notice
that dim(MQ) = 3 and that TQX = 〈FQ ∪ TQCQ〉 is a hyperplane of it. Fix
Q ∈ X and P ∈ TQX \ (FQ ∪ TQCQ). Let ℓ : MQ \ {P | → 〈CQ〉 denote the
linear projection from P . Since P /∈ (FQ ∪ TQCQ), ℓ(FQ) is a line not tangent
to CQ at Q. Hence there is A ∈ CQ ∩ ℓ(FQ) such that A 6= Q. Thus there
are A1 ∈ FQ \ Q and A2 ∈ CQ \ {Q} such that ℓ(A1) = A2, i.e. such that
P ∈ 〈{A1, A2}〉. Thus rX(P ) ≤ 2. Now take P ∈ TQCQ \ {Q}. Since TQCQ is
contained in the plane 〈CQ〉, there is S ⊂ CQ such that ♯(S) = 2 and P ∈ 〈S〉.
Thus rX(P ) ≤ 2.

Example 3. Here we assume that X is the degree 4 rational normal
scroll S(1, 3). For any Q ∈ X let FQ denote the fiber of the ruling π of X
containing Q. FQ is a line and {FQ}, Q ∈ X, and the section h with negative
self-intersection of π are the only lines of X. If Q ∈ h, then TQX ∩X = h∪FQ

spans TQX. Thus rX(P ) ≤ 2 for all Q ∈ h and all P ∈ TQX. Fix Q ∈ X \h and
P ∈ TQX \ FQ. To prove the inequality rX(P ) ≥ 3 (and hence that rX(P ) = 3
by [3], Proposition 5.1) it is sufficient to prove the non-existence of infinitely
many secant lines to X containing P (see [1], i) at p. 480). Assume that
this is the case and call T ⊂ X the one-dimensional part of the entry locus
of P . Fix a general hyperplane H ⊂ P5 containing the line 〈{P,Q}〉. Since
P /∈ FQ, 〈{P,Q}〉 is tangent to X at Q and X is cut out by quadrics, we have
(〈{P,Q}〉)∩X)red = {Q}. Hence Bertini’s Theorem gives the smoothness of the
curve C := X ∩ H. Thus C is a rational normal curve of H. By construction
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P ∈ TQC\{Q}. Hence rC(P ) = 4 (see [2] or [3], Theorem 4.1). Since rC(P ) > 2
and any two tangent lines of C are disjoint, we get (T ∩H)red ⊆ {Q}. Varying
H we get that T is a union of lines through Q. Since Q /∈ h and P /∈ FQ, this
is absurd.

Example 4. Here we take X = P1 × P1 × P1 ⊂ P7 embedded by the
complete linear system |OX(1, 1, 1)|. X is a smooth OADP (see [1], Proposition
2.3). Thus σ2(X) = P7. Fix Q ∈ X. Notice that TXQ ∪ X is the union of
3 lines D1,D2,D3 containing Q and spanning TQX. For all i, j ∈ {1, 2, 3}
such that i < j set Dij := 〈Di ∪ Dj〉. Each point of Dij \ (Di ∪ Dj) has X-
rank 2 anf this rank is computed by infinitely many set S ⊂ Di ∪ Dj . Fix
P ∈ TQX \ (D12 ∪ D13 ∪ D23). A general plane M ⊆ TQX containing P is
spanned by the 3 points M ∩ (D1 ∪ D2 ∪ D3). Thus there are infinitely many
S ⊂ D1 ∪ D2 ∪ D3 \ {Q} such that ♯(S ∩ Di) = 1 for all i and P ∈ 〈S〉. Hence
rX(P ) ≤ 3. Since X is a variety with OADP, [1], i) at p. 480, gives rX(P ) ≥ 3
for all P ∈ τ(X) \ G(X, 2)′ and in particular for a general P ∈ τ(X). Since
all pairs (Q,P ) with P ∈ TQX and P not on any plane Dij are projectively
equivalent, we get rX(P ) = 3 for all P ∈ TQX \ (D12 ∪ D13 ∪ D23).

Proof of Theorem 1. In all cases X is homogeneous, say X = G/P with G a
connected algebraic group and Pa parabolic subgroup of G, and the embedding
X →֒ Pn is stable by the G-action (see [6], Chapter III). In all cases X, Sec(X)\
X and Pn \Sec(X) are the G-orbits for this linear action of G on Pn. Hence all
the results on the border rank are obvious, as well the results on E(X, 2). Thus
to conclude the proof it is sufficient find P ∈ Pn \ Sec(X) such that rX(P ) ≤ 3
(use the G-action). Fix any P ∈ Pn \Sec(X). Since Sec(X)\X = E(X, 2), it is
sufficient to find Q ∈ X such that 〈{P,Q}〉 ∩ Sec(X) \ X 6= ∅. This is obvious
at least for some P ∈ Pn \ Sec(X), because Sec(X) is not a cone with vertex
containing X.

Acknowledgments

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

[1] C. Ciliberto, M. Mella, F. Russo, Varieties with one apparent double point,
J. Algebraic Geom., 13, No. 3 (2004), 475-512.



SEVERI VARIETIES, VARIETIES WITH AN APPARENT... 283

[2] G. Comas, M. Seiguer, On the rank of a binary form, ArXiv:

math.AG/0112311.

[3] J.M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric
tensors, ArXiv: 0901.0487v3.

[4] R. Lazarsfeld, A. Van de Ven, Topics in the geometry of projective space,
Recent work of F.L. Zak, with an addendum by Zak, DMV Seminar, 4.
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