International Journal of Pure and Applied Mathematics

Volume 63 No. 3 2010, 279-283

SEVERI VARIETIES, VARIETIES WITH AN APPARENT DOUBLE POINT AND THE STRATIFICATION OF \mathbb{P}^n BY THEIR X-RANKS

E. Ballico

Department of Mathematics University of Trento 38 123 Povo (Trento) - Via Sommarive, 14, ITALY e-mail: ballico@science.unitn.it

Abstract: Let $X \subset \mathbb{P}^n$ be an integral variety. For any $P \in \mathbb{P}^n$ the X-rank $r_X(P)$ is the minimal cardinality of a set $S \subset X$ such that $P \in \langle S \rangle$. Here we study the stratification of \mathbb{P}^n when X is a Severi variety or a smooth variety with only one apparent double point (OADP).

AMS Subject Classification: 14N05

Key Words: ranks, border ranks, extremal varieties, Severi varieties, variety with OADP

*

Let $X \subseteq \mathbb{P}^n$ be an integral and non-degenerate *m*-dimensional variety defined over an algebraically closed field \mathbb{K} such that $\operatorname{chark}(\mathbb{K}) = 0$. For any $P \in \mathbb{P}^n$ the *X*-rank $r_X(P)$ of *P* is the minimal cardinality of a finite set $S \subset X$ such that $P \in \langle S \rangle$, where $\langle \rangle$ denotes the linear span (see [3]). For any integer *t* set $E(X,t) := \{P \in \mathbb{P}^n : r_X(P) = t\}$ and $E(X, \geq t) := \bigcup_{x \geq t} E(X, x)$. The *s*-th secant variety $\sigma_s(X) \subseteq \mathbb{P}^n$ of *X* is the closure in \mathbb{P}^n of the union of all (s-1)-dimensional linear subspaces spanned by *s* points of *X*. Hence with this convention $\sigma_1(X) = X$ and $\sigma_2(X)$ is the secant variety $\operatorname{Sec}(X)$ of *X*. For any $P \in \mathbb{P}^n$ let $b_X(P)$ denote the border *X*-rank of *P*, i.e. the first integer

Received: January 18, 2010

© 2010 Academic Publications

s > 0 such that $P \in \sigma_s(X)$. Sometimes $b_X(P)$ is called the *secant* X-rank of P. Set $G(X,t) := \{P \in \mathbb{P}^n : b_X(P) = t\}$ and $G(X, \ge t) := \bigcup_{x \ge t} G(X, x)$. Notice that X = E(X, 1) = G(X, 1) for all X. Let $\tau(X) \subseteq \mathbb{P}^n$ denote the tangent developable of X, i.e. the closure in \mathbb{P}^n of the union of all m-dimensional tangent spaces $T_QX, Q \in X_{reg}$. Notice that if X is smooth, then $\sigma_2(X) \setminus \tau(X) \subseteq E(X, 2)$. If X is smooth let G(X, 2)' (resp. G(X, 2)'') be the set of all $P \in \mathbb{P}^n$ such that there are infinitely many lines (resp. at least two lines) D such that $P \in D$ and length $(D \cap X) \ge 2$. We have $G(X, 2)' \subseteq G(X, 2)'' \subseteq \sigma_2(X)$. If $\dim(\sigma_2(X)) = 2m + 1$, then a dimentional count gives $G(X, 2)' \subsetneq \sigma_2(X)$.

Theorem 1. Let $X \subset \mathbb{P}^n$ be one of the 4 Severi varieties (see [6], [4]). Hence X is smooth, $m \in \{2, 4, 8, 16\}$ and n = 3m/2 - 1. Then Sec(X) is a cubic hypersurface with X as its singular locus, X = E(X, 1) = G(X, 1), $Sec(X) \setminus X = E(X, 2) = G(X, 2), \mathbb{P}^n \setminus Sec(X) = E(X, 3) = G(X, 3)$ and $E(X, \ge 4) = G(X, \ge 4) = \emptyset$.

Assume that X is OADP in the sense of [1]. Since X is smooth, $\sigma_2(X) \setminus \tau(X) \subseteq E(X,2)$. Fix $P \in \tau(X) \subset X$. Since X is OADP, either $r_X(P) \ge 3$ or P lies on infinitely many secant lines to X (see [1], statement i) at p. 480). The latter occurs only on

Proposition 1. Assume that $X \subset \mathbb{P}^n$, n = 2m + 1, is a smooth *m*-dimensional OADP. Then $\dim(E(X,3)) = n - 1$, $E(X,3) \subseteq \tau(X)$ and E(X,3) contains a non-empty open subset of $\tau(X)$.

All smooth OADP of dimension 2 and 3 are classified (see [1]). Using the classification and a case-by-case analysis we are able to show that if m = 2 then $E(X,3) = \tau(X) \setminus X$ (see Examples 1, 2 and 3 below). Then we consider another OADP with m = 3: the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ (Example 4). Motivated by this computation we raise the following question.

Question 1. Fix integers $s \ge 2$ and $m_i \ge 1$, $1 \le i \le s$. Set $n := -1 + \prod_{i=1}^{s} (m_1+1)$. Set $X := \prod_{i=1}^{s} \mathbb{P}^{m_i}$ embedded in \mathbb{P}^n by the complete linear system $|\mathcal{O}_X(1,\ldots,1)|$. Is $r_X(P) = s$ for all $P \in \tau(X) \setminus X$?

In the set-up of Question 1 the proof of Example 4 gives $r_X(P) \leq s$ and that for every $Q \in X$ there are infinitely many $S \subset X \cap T_Q X$ such that $\sharp(S) = s$ and $P \in \langle S \rangle$.

Example 1. Here we assume that X is a del Pezzo surface of degree 5, i.e. it is isomorphic to the anticanonical model $X \subset \mathbb{P}^5$ of the blowing up of \mathbb{P}^2 at 4 not collinear points. Fix $Q \in X$ and $P \in T_Q X \setminus X \cap T_Q X$. To prove the inequality $r_X(P) \geq 3$ (and hence that $r_X(P) = 3$ by [3], Proposition

5.1) it is sufficient to prove the non-existence of infinitely many secant lines to X containing P (see [1], i) at p. 480). Assume that this is the case and call $T \subset X$ the one-dimensional part of the entry locus of P. Fix a general hyperplane $H \subset \mathbb{P}^5$ containing the line $\langle \{P,Q\}\rangle$. Since $\langle \{P,Q\}\rangle$ is tangent to X at Q and X is cut out by quadrics, we have $(\langle \{P,Q\}\rangle) \cap X)_{red} = \{Q\}$. Hence Bertini's Theorem gives the smoothness of the curve $C := X \cap H$. Thus C is a rational normal curve of H. By construction $P \in T_Q C \setminus \{Q\}$. Hence $r_C(P) = 4$ (see [2] or [3], Theorem 4.1). Since $r_C(P) > 2$ and any two tangent lines of C are disjoint, we get $(T \cap H)_{red} \subseteq \{Q\}$. Varying H we get that T is a union of lines through Q. There are only finitely many lines in X and even if Q is on one of these lines, say R, we conclude, because P is not in all T_AX , $A \in R$.

Example 2. Here we assume that X is the degree 4 rational normal scroll S(2,2), i.e. the embedding of $X \cong \mathbb{P}^1 \times \mathbb{P}^1$ into \mathbb{P}^5 induced by the complete linear system $|\mathcal{O}_X(1,2)|$. For any $P \in X$ let F_Q be the only line contained in X and containing Q. Thus F_Q is a fiber of one of the rulings of X. Call C_Q the fiber of the other ruling of X containing Q. The curve C_Q is embedded in \mathbb{P}^5 as a smooth conic. Set $M_Q := \langle F_Q \cup C_Q \rangle$. Notice that dim $(M_Q) = 3$ and that $T_Q X = \langle F_Q \cup T_Q C_Q \rangle$ is a hyperplane of it. Fix $Q \in X$ and $P \in T_Q X \setminus (F_Q \cup T_Q C_Q)$. Let $\ell : M_Q \setminus \{P| \to \langle C_Q \rangle$ denote the linear projection from P. Since $P \notin (F_Q \cup T_Q C_Q)$, $\ell(F_Q)$ is a line not tangent to C_Q at Q. Hence there is $A \in C_Q \cap \ell(F_Q)$ such that $A \neq Q$. Thus there are $A_1 \in F_Q \setminus Q$ and $A_2 \in C_Q \setminus \{Q\}$ such that $\ell(A_1) = A_2$, i.e. such that $P \in \langle \{A_1, A_2\} \rangle$. Thus $r_X(P) \leq 2$. Now take $P \in T_Q C_Q \setminus \{Q\}$. Since $T_Q C_Q$ is contained in the plane $\langle C_Q \rangle$, there is $S \subset C_Q$ such that $\sharp(S) = 2$ and $P \in \langle S \rangle$.

Example 3. Here we assume that X is the degree 4 rational normal scroll S(1,3). For any $Q \in X$ let F_Q denote the fiber of the ruling π of X containing Q. F_Q is a line and $\{F_Q\}, Q \in X$, and the section \underline{h} with negative self-intersection of π are the only lines of X. If $Q \in \underline{h}$, then $T_QX \cap X = \underline{h} \cup F_Q$ spans T_QX . Thus $r_X(P) \leq 2$ for all $Q \in \underline{h}$ and all $P \in T_QX$. Fix $Q \in X \setminus \underline{h}$ and $P \in T_QX \setminus F_Q$. To prove the inequality $r_X(P) \geq 3$ (and hence that $r_X(P) = 3$ by [3], Proposition 5.1) it is sufficient to prove the non-existence of infinitely many secant lines to X containing P (see [1], i) at p. 480). Assume that this is the case and call $T \subset X$ the one-dimensional part of the entry locus of P. Fix a general hyperplane $H \subset \mathbb{P}^5$ containing the line $\langle \{P,Q\} \rangle$. Since $P \notin F_Q, \langle \{P,Q\} \rangle$ is tangent to X at Q and X is cut out by quadrics, we have $(\langle \{P,Q\} \rangle) \cap X)_{red} = \{Q\}$. Hence Bertini's Theorem gives the smoothness of the curve $C := X \cap H$. Thus C is a rational normal curve of H. By construction

 $P \in T_QC \setminus \{Q\}$. Hence $r_C(P) = 4$ (see [2] or [3], Theorem 4.1). Since $r_C(P) > 2$ and any two tangent lines of C are disjoint, we get $(T \cap H)_{red} \subseteq \{Q\}$. Varying H we get that T is a union of lines through Q. Since $Q \notin \underline{h}$ and $P \notin F_Q$, this is absurd.

Example 4. Here we take $X = \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7$ embedded by the complete linear system $|\mathcal{O}_X(1,1,1)|$. X is a smooth OADP (see [1], Proposition 2.3). Thus $\sigma_2(X) = \mathbb{P}^7$. Fix $Q \in X$. Notice that $T_X Q \cup X$ is the union of 3 lines D_1, D_2, D_3 containing Q and spanning $T_Q X$. For all $i, j \in \{1,2,3\}$ such that i < j set $D_{ij} := \langle D_i \cup D_j \rangle$. Each point of $D_{ij} \setminus (D_i \cup D_j)$ has X-rank 2 and this rank is computed by infinitely many set $S \subset D_i \cup D_j$. Fix $P \in T_Q X \setminus (D_{12} \cup D_{13} \cup D_{23})$. A general plane $M \subseteq T_Q X$ containing P is spanned by the 3 points $M \cap (D_1 \cup D_2 \cup D_3)$. Thus there are infinitely many $S \subset D_1 \cup D_2 \cup D_3 \setminus \{Q\}$ such that $\sharp (S \cap D_i) = 1$ for all i and $P \in \langle S \rangle$. Hence $r_X(P) \leq 3$. Since X is a variety with OADP, [1], i) at p. 480, gives $r_X(P) \geq 3$ for all $P \in \tau_Q X \setminus G(X, 2)'$ and in particular for a general $P \in \tau(X)$. Since all pairs (Q, P) with $P \in T_Q X$ and P not on any plane D_{ij} are projectively equivalent, we get $r_X(P) = 3$ for all $P \in \tau_Q X \setminus (D_{12} \cup D_{13} \cup D_2)$.

Proof of Theorem 1. In all cases X is homogeneous, say X = G/P with G a connected algebraic group and Pa parabolic subgroup of G, and the embedding $X \hookrightarrow \mathbb{P}^n$ is stable by the G-action (see [6], Chapter III). In all cases X, $\operatorname{Sec}(X) \setminus X$ and $\mathbb{P}^n \setminus \operatorname{Sec}(X)$ are the G-orbits for this linear action of G on \mathbb{P}^n . Hence all the results on the border rank are obvious, as well the results on E(X,2). Thus to conclude the proof it is sufficient find $P \in \mathbb{P}^n \setminus \operatorname{Sec}(X)$ such that $r_X(P) \leq 3$ (use the G-action). Fix any $P \in \mathbb{P}^n \setminus \operatorname{Sec}(X)$. Since $\operatorname{Sec}(X) \setminus X = E(X,2)$, it is sufficient to find $Q \in X$ such that $\langle \{P,Q\} \rangle \cap \operatorname{Sec}(X) \setminus X \neq \emptyset$. This is obvious at least for some $P \in \mathbb{P}^n \setminus \operatorname{Sec}(X)$, because $\operatorname{Sec}(X)$ is not a cone with vertex containing X.

Acknowledgments

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

 C. Ciliberto, M. Mella, F. Russo, Varieties with one apparent double point, J. Algebraic Geom., 13, No. 3 (2004), 475-512.

- [2] G. Comas, M. Seiguer, On the rank of a binary form, *ArXiv:* math.AG/0112311.
- [3] J.M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric tensors, *ArXiv*: 0901.0487v3.
- [4] R. Lazarsfeld, A. Van de Ven, Topics in the geometry of projective space, Recent work of F.L. Zak, with an addendum by Zak, *DMV Seminar*, 4. Birkhäser Verlag, Basel (1984).
- [5] F. Russo, On a theorem of Severi, Math. Ann., 316, No. 1 (2000), 1-17.
- [6] F.L. Zak, Tangents and Secants of Algebraic Varieties, Translated from the Russian manuscript by the author. Translations of Mathematical Monographs, 127, American Mathematical Society, Providence, RI (1993).