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Abstract: In this paper we consider a second order functional differential
equation

(r(t)x′)′ + q(t)f

(

max
s∈[σ(t),τ(t)]

x(s)

)

= b(t),

containing a function f of sublinear rate and depending on the maximum of the
unknown x(t) and defined on some interval taken before coming the present time
t. We call this equation with “maxima”. Criteria for existence of nonoscillating
solutions are established under requirement that r, r′, q, b should be continuous
on some sets, and f has sublinear rate. These differential equations could be
seen in lots of mathematical models in theoretical physics, optimal control,
chemistry, mechanics of materials, biology, ecology, etc.
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1. Introduction

We consider the second order functional differential equation with “maxima”
that has the form

(

r(t)x′(t)
)′

+ q(t)f

(

max
s∈[σ(t),τ(t)]

x(s)

)

= b(t), (1)

where the real scalar functions σ and τ , determining the interval on which
max

s∈[σ(t),τ(t)]
x(s) is defined are continuous, monotone increasing and satisfy the

inequalities σ(t) ≤ τ(t) ≤ t ∈ R+.

The study of differential equations with “maxima” begins with the works of
A. Magomedov [12], [13], where a linear differential equations with “maxima”
was considered as a mathematical model in the theory of optimal control. In
most cases we use “maxima” in the right-hand side when the control corre-
sponds to the maximal deviation of the regulated quantity that could be for
instance temperature, heat, current density, pressure and so on.

The oscillation properties of the solutions of differential equations with
“maxima” were studied by Bainov and his associates (see, e.g. [1]-[6]). How-
ever, very little is known about the nonoscillation of equations with forcing
terms even in the case of ODEs without “maxima”. We refer the reader to see
Greaf, Spikes (see. e.g. [7]-[9]), and Kusano, Onose (see, e.g. [11]).

In this paper we establish new criteria for existence of nonoscillatory solu-
tions for equation (1). The functions q, b, r, f satisfy some integral conditions
that lead to existence of these solutions applied in many areas of physics, opti-
mal control, biology, etc.

2. Preliminary Notes

Recollect some standard sets R+ ≡ [0,+∞), R
0
+ ≡ (0,+∞) and N = {1, 2, ...},

that will be used further in the paper, and introduce the conditions:

(H1) r ∈ C1(R+, R0
+), q ∈ C(R+, R+) and sup

{

q(s) : s ≥ t, t ∈ R+

}

> 0.

(H2) b ∈ C(R+, R).

(H3) f(z) is nondecreasing in z ∈ R, f ∈ C(R, R), and zf(z) > 0 for z 6= 0.

(H4) The functions σ, τ ∈ C(R+, R) are nondecreasing, lim
t→+∞

σ(t) = +∞, and

σ(t) ≤ τ(t) ≤ t for all t ∈ R+.
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(H5) f(z) is sublinear, that is lim sup
|x|→+∞

f(x)
x

< +∞.

Further we make use of the following definitions.

Definition 1. The solution x(t) of equation (1) is said to be:

(1) proper if it is defined in some interval [Tx,+∞) and sup{|x(t)| : t ≥ T} >

0 for T ≥ Tx;

(2) finally positive (finally negative) if there exists T ≥ 0 such that x(t) > 0
(x(t) < 0) is defined for t ≥ T ;

(3) oscillatory if it is proper and neither finally positive nor finally negative;

(4) nonoscillatory if it is either finally positive or finally negative.

3. Main Results

Lemma 1. Let the conditions (H1)-(H4) be satisfied.

1. If

lim inf
t→+∞

t
∫

T

[b(s) − kq(s)] ds > 0

for each finite number k > 0, and T ∈ R+, (2)

then there does not exist oscillatory solution of equation (1) that is
bounded above.

2. If

lim inf
t→+∞

t
∫

T

[b(s) + kq(s)] ds < 0

for each finite number k > 0, and T ∈ R+, (3)

then there does not exist oscillatory solution of equation (1) that is
bounded below.

Proof. We shall prove the statement 1. The proof of statement 2 is analo-
gous.
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Let x0(t) be an oscillatory solution of equation (1) and x0(t) ≤ M for
some positive number M and for t ≥ T0 ≥ 0. Let t1 ≥ T0 be such that
T0 ≤ σ(t) ≤ τ(t) ≤ t for all t ≥ t1. Then max

s∈[σ(t),τ(t)]
x0(s) ≤ M for t ≥ t1.

There exists t2 ≥ t1 such that x′
0(t2) = 0, becouse x0(t) is an oscillatory

function. Therefore, after integrating (1) in [t2, t], we get

r(t)x′
0(t) =

t
∫

t2

[

b(s) − q(s)f

(

max
u∈[σ(s),τ(s)]

x0(u)

)]

ds ≥

t
∫

t2

[b(s) − q(s)f(M)]ds.

Letting t → +∞ and using (2) we conclude that r(t)x′
0(t) > 0 for all large t

which is impossible for the oscillatory function x0(t).

Remark 1. The inequality (2) (inequality (3)) is satisfied provided that
either:

(i)

∞
∫

0

q(t)dt < +∞ and

+∞
∫

0

b(t)dt = +∞ (−∞),

or

(ii) lim
t→+∞

b(t)

q(t)
= +∞ (−∞).

Lemma 2. Let conditions (H1)-(H4) hold.

1. If

lim
t→+∞

t
∫

0

[b(s) − kq(s)]ds = +∞, (4)

and

lim sup
t→+∞

t
∫

T

1

r(u)

u
∫

T

[b(s) − kq(s)]dsdu = +∞ (5)

for each k > 0 and T ∈ R+ then all proper solutions of equation (1) are
unbounded above.

2. If

lim
t→+∞

t
∫

0

[b(s) + kq(s)]ds = −∞, (6)



NONOSCILLATION OF A SECOND ORDER SUBLINEAR... 305

and

lim inf
t→+∞

t
∫

T

1

r(u)

u
∫

T

[b(s) + kq(s)]dsdu = −∞ (7)

for each k > 0 and T ∈ R+ then all proper solutions of equation (1) are
unbounded below.

Proof. First we shall prove 1. Let x0(t) be a proper solution of (1) for
t ≥ T0 ≥ 0 which is bounded above. Provided that (4), (5) hold, then there
exist a positive number M and a positive t0 ≥ T0 such that x0(t) ≤ M , for
all t ≥ t0. Let t1 ≥ t0 be such that t0 ≤ σ(t) ≤ τ(t) ≤ t for all t ≥ t1. Then

max
s∈[σ(t),τ(t)]

x0(s) ≤ M , and after integrating (1) from t1 to t we obtain

r(t)x′
0(t) = r(t1)x

′
0(t1) +

t
∫

t1

[

b(s) − q(s)f

(

max
u∈[σ(s),τ(s)]

x0(u)

)]

ds

≥ r(t1)x
′
0(t1) +

t
∫

t1

[b(s) − q(s)f(M)]ds. (8)

Therefore

lim
t→+∞

r(t)x′
0(t) = +∞. (9)

Hence there exists T ≥ t1 such that r(T )x′
0(T ) ≥ 0 and proceeding as above we

get

r(t)x′
0(t) ≥

t
∫

T

[b(s) − q(s)f(M)]ds, t ≥ T.

This implies that

x0(t) ≥ x0(T ) +

t
∫

T

1

r(u)

u
∫

T

[b(s) − q(s)f(M)]dsdu, t ≥ T.

Then using (5) obtain that

lim sup
t→+∞

x0(t) = +∞,

which is a contradiction.

The proof of statement 2 is analogous.

Remark 2. Lemma 1 remains valid if conditions (5) and (7) are replaced
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by the condition
+∞
∫

0

dt

r(t)
= +∞. (10)

Corollary 1. Let the conditions (H1)-(H4) and (10) hold. Then:

1. All proper solutions of (1) are unbounded above if condition (4) holds.

2. All proper solutions of equation (1) are unbounded below if condition (6)
holds.

Proof. 1. Let condition (4) and (10) hold and x0(t) be a proper solution of
equation (1) which is bounded above. Then (9) is true and there exist t2 ≥ t1
and a number Q > 0 such that

r(t)x′
0(t) ≥ Q, t ≥ t2.

This implies that

x0(t) ≥ x0(t2) +

t
∫

t2

Qds

r(s)
→ +∞ as t → +∞,

which is a contradiction.

The proof of statement 2 is analogous.

Theorem 1. Assume that:

1. Conditions (H1)-(H5) hold and
+∞
∫

0

1

r(u)

+∞
∫

u

q(s)dsdu < +∞. (11)

2. Either b(t) ≥ 0 for t ≥ T and (2) hold, or b(t) ≤ 0 for t ≥ T and (3) hold.

Then all proper solutions of equation (1) are nonoscillatory.

Proof. Consider the case when b(t) ≥ 0 for all t ≥ T0 and condition (2) hold
true. Suppose that there exists an oscillatory solution x0(t), t ≥ T0 of equation
(1), where T0 is sufficiently large. Thus from Lemma 1 we conclude that x0(t)
is unbounded above.

Next we select two sequences {σn} and {τn} of zeros of x0(t) such that
t0 ≤ σn < τn,

lim
n→+∞

σn = lim
n→+∞

τn = +∞, x0(t) > 0, t ∈ (σn, τn),
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and

Mn = max
[σn,τn]

x0(t) = max
[σ1,τn]

x0(t), n ∈ N,

where the increasing sequence {Mn} tends to infinity as n → +∞. Let Mn =
x0(tn) be a sequence of maximal values of x0(t) in (σn, τn), n ∈ N. After
integrating (1) from t ∈ [σn, τn] to tn (t ≤ tn) obtain

r(t)x′
0(t) =

tn
∫

t

[

q(s)f

(

max
u∈[σ(s),τ(s)]

x0(u)

)

− b(s)

]

ds

≤

tn
∫

t

q(s)f

(

max
u∈[σ(s),τ(s)]

x0(u)

)

ds, (12)

where n is taken so large that τ(s) ≥ σ(s) ≥ σ1 for s ≥ σn.

Dividing (12) by r(t) and integrating from σn to tn we get

Mn = x0(tn) ≤

tn
∫

σn

1

r(u)

tn
∫

u

q(s)f

(

max
v∈[σ(s),τ(s)]

x0(v)

)

dsdu.

Note that t0 ≤ σn ≤ σ(s) ≤ τ(s) ≤ s ≤ tn and max
v∈[σ(s),τ(s)]

x0(v) ≤ Mn. Hence

Mn ≤ f(Mn)

tn
∫

σn

1

r(u)

tn
∫

u

q(s)dsdu

and keeping in mind (11) we obtain

1 ≤
f(Mn)

Mn

+∞
∫

σn

1

r(u)

+∞
∫

u

q(s)dsdu. (13)

Since the sequence
{

f(Mn)
Mn

}

is bounded above the right-hand side of (13) tends

to zero as n → +∞ therefore this is a contradiction.

By similar reasoning we reach a contradiction in the case when b(t) ≤ 0,
t ≥ T0, and (3) hold.

Remark 3. Condition (11) holds if either
+∞
∫

0

dt

r(t)
= +∞ and

+∞
∫

0

(

t
∫

0

ds

r(s)

)

q(t)dt < +∞,
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or
+∞
∫

0

dt

r(t)
< +∞ and

+∞
∫

0

q(t)dt < +∞.

Remark 4. Conditions (4) and (6) are stronger than conditions (2) and
(3), respectively.

Having in mind the above stated Remark 4 we state a theorem that is a
corollary of Theorem 1 and Lemma 2.

Theorem 2. Let conditions (H1)-(H5) and (11) be satisfied.

1. If b(t) ≥ 0 for t ≥ T0 and both conditions (4) and (5) hold then all proper
solutions of equation (1) are nonoscillatory and unbounded above.

2. If b(t) ≤ 0 for t ≥ T0 and both conditions (6) and (7) hold then all proper
solutions of equation (1) are nonoscillatory and unbounded below.

From Theorem 1 and Corollary 1 it follows:

Corollary 2. Let conditions (H1)-(H5), (10) and (11) hold.

1. If b(t) ≥ 0 for t ≥ T0 and condition (4) hold then all proper solutions of
equation (1) are nonoscillatory and unbounded above.

2. If b(t) ≤ 0 for t ≥ T0 and condition (6) holds then all proper solutions of
equation (1) are nonoscillatory and unbounded below.
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