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Abstract: This paper studies the stabilization of the infinite-dimensional
linear time-varying system with state delays

ẋ = A(t)x + A1(t)x(t − h) + B(t)u .

The operator A(t) is assumed to be the generator of a strong evolution operator.
In contrast to the previous results, the stabilizability conditions are obtained
via solving a Riccati differential equation and do not involve any stability prop-
erty of the evolution operator. Our conditions are easy to be constructed and
verifyed. We provide a step-by-step procedure for finding feedback controllers.
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1. Introduction

Consider a linear control system with state delays

ẋ(t) = A(t)x(t) + A1(t)x(t − h) + B(t)u(t), t ≥ t0,

x(t) = φ(t), t ∈ [−h, t0],
(1.1)

where x ∈ X is the state, u ∈ U is the control, h ≥ 0. The stabilizability
question consists on finding a feedback control u(t) = K(t)x(t) for keeping the
closed-loop system

ẋ(t) = [A(t) + B(t)K(t)]x(t) + A1(t)x(t − h)

asymptotically stable in the Lyapunov sense. In the qualitative theory of dy-
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namical systems, the stabilizability is one of the most important properties of
the systems and has attracted the attention of many researchers; see for ex-
ample [1, 7, 10, 16, 17, 21] and references therein. It is well known that the
main technique for solving stabilizability for control systems is the Lyapunov
function method, but finding Lyapunov functions is still a difficult task (see,
e.g. [3, 13, 15, 19, 20, 22]). However, for linear control system (1.1), the system
can be made exponentially stabilizable if the underlying system ẋ(t) = A(t)x(t)
is asymptotically stable. In other words, if the evolution operator E(t, s) gen-
erated by A(t) is stable, then the delay control system (1.1) is asymptotically
stabilizable under appropriate conditions on A1(t) (see [1, 17, 22]). For infinite-
dimensional control systems, the investigation of stabilizability is more com-
plicated and requires sophisticated techniques from semigroup theory. The
difficulties increase to the same extent as passing from time-invariant to time-
varying systems. Some results have been given in [2, 4, 9, 17] for time-invariant
systems in Hilbert spaces.

The paper is organized as follows. In Section 2 we give the notation, and
definitions to be used in this paper. Auxiliary propositions are given in Section
3. Sufficient conditions for the stabilizability are presented in Section 4.

2. Notation and Definitions

We will use the following notation: R
+ denotes the set of all non-negative real

numbers. X denotes a Hilbert space with the norm ‖.‖X and the inner product
〈., .〉X , etc. L(X) (respectively, L(X,Y )) denotes the Banach space of all linear
bounded operators S mapping X into X (respectively, X into Y ) endowed with
the norm

‖S‖ = sup{‖Sx‖ : x ∈ X, ‖x‖ ≤ 1}.

L2([t, s],X) denotes the set of all strongly measurable square integrable X-
valued functions on [t, s]. D(A), Im(A), A∗ and A−1 denote the domain, the
image, the adjoint and the inverse of the operator A, respectively. If A is
a matrix, then AT denotes the conjugate transpose of A. B1 = {x ∈ X :
‖x‖ = 1}. cl M denotes the closure of a set M ; I denotes the identity operator.
C[t,s],X denotes the set of all X-valued continuous functions on [t, s]. Let X,U
be Hilbert spaces. Consider a linear time-varying control undelayed system
[A(t), B(t)] given by

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ t0,

x(t0) = x0,
(2.1)
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where x(t) ∈ X, u(t) ∈ U ; A(t) : X → X; B(t) ∈ L(U,X).

In the sequel, we say that control u(t) is admissible if u(t) ∈ L2([t0,∞), U).

We make the following assumptions on the system (2.1):

(i) B(t) ∈ L(U,X) and B(.)u ∈ C[t0,∞),X for all u ∈ U .

(ii) The operator A(t) : D(A(t)) ⊂ X → X, cl D(A(t)) = X is a bounded
function in t ∈ [t0,∞) and generates a strong evolution operator E(t, τ) :
{(t, τ) : t ≥ τ ≥ t0} → L(X) (see, e.g. [5, 6]):

E(t, t) = I, t ≥ t0, E(t, τ)E(τ, r) = E(t, r), ∀t ≥ τ ≥ r ≥ t0 ,

E(t, τ) is continuous in t and τ , E(t, t0)x = x+
∫ t

t0
E(t, τ)A(τ)xdτ , for all

x ∈ D(A(t)), so that the system (2.1), for every admissible control u(t)
has a unique solution given by

x(t) = E(t, t0)x0 +

∫ t

t0

E(t, τ)B(τ)u(τ)dτ.

Definition. The system [A(t), B(t)] is called globally null-controllable in
time T > 0, if every state can be transferred to 0 in time T by some admissible
control u(t), i.e.,

ImU(T, t0) ⊂ LT (L2([t0, T ), U),

where LT =
∫ T

t0
E(T, s)B(s)ds.

Definition. The system [A(t), B(t)] is called stabilizable if there exists an
operator function K(t) ∈ L(X,U) such that the zero solution of the closed loop
system ẋ = [A(t) + B(t)K(t)]x is asymptotically stable in the Lyapunov sense.

Following the setting in [2], we give a concept of the Riccati differential
equation in a Hilbert space. Consider a differential operator equation

Ṗ (t) + A∗(t)P (t) + P (t)A(t) − P (t)B(t)R−1B∗(t)P (t) + Q(t) = 0, (2.2)

where P (t), Q(t) ∈ L(X) and R > 0 is a constant operator.

Definition. An operator P (t) ∈ L(X) is said to be a solution of the Riccati
differential equation (2.2) if for all t ≥ t0 and all x ∈ D(A(t)),

〈Ṗ x, x〉 + 〈PAx, x〉 + 〈Px,Ax〉 − 〈PBR−1B∗Px, x〉 + 〈Qx, x〉 = 0 .

An operator Q ∈ L(X) is said to be non-negative definite, denote by Q ≥ 0, if
〈Qx, x〉 ≥ 0, for all x ∈ X. If for some c > 0, 〈Qx, x〉 > c‖x‖2 for all x ∈ X,
then Q is called positive definite and is denote by Q > 0. Operator Q ∈ L(X)
is called self-adjoint if Q = Q∗. The self-adjoint operator is characterized by
the fact that its inner product 〈Qx, x〉 takes only real values and its spectrum
is a bounded closed set on the real axis. The least segment that contains the
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spectrum is [λmin(Q), λmax(Q)], where

λmin(Q) = inf{〈Qx, x〉 : x ∈ B1},

λmax(Q) = sup{〈Qx, x〉 : x ∈ B1} = ‖Q‖.

We denote by BC([t,∞],X+) the set of all linear bounded self-adjoint non-
negative definite operators in L(X) that are continuous and bounded on [t,∞).

3. Auxiliary Propositions

To prove the main results we need the following propositions.

Proposition 3.1. (see [5]) If Q ∈ L(X) is a self-adjoint positive definite
operator, then λmin(Q) > 0 and

λmin(Q)‖x‖2 ≤ 〈Qx, x〉 ≤ λmax(Q)‖x‖2, ∀x ∈ X.

Proposition 3.2. (see [11]) Assume that there exist a function V (t, xt) :
R+ × C([t0,−h]) → R+ and numbers c1 > 0, c2 > 0, c3 > 0 such that:

(i) c1‖x(t)‖2 ≤ V (t, xt) ≤ c2‖xt‖
2, for all t ≥ t0.

(ii) d
dt

V (t, xt) ≤ −c3‖x(t)‖2, for all t ≥ t0.

Then the system (3.3) is asymptotically stable.

4. Stabilizability Conditions

Consider the linear control delay system (1.1), where x(t) ∈ X, u(t) ∈ U ; X,U
are infinite-dimensional Hilbert spaces; A1(t) : X → X and A(t), B(t) satisfy
the assumptions stated in Section 2 so that the control system (1.1) has a unique
solution for every initial condition φ(t) ∈ C[0,∞),X and admissible control u(t).
Let

p = sup
t∈[t0,∞)

‖P (t)‖.

Theorem 4.1. Assume that for some self-adjoint constant positive definite
operator Q ∈ L(X), the Riccati differential equation (2.2), where R = I has a
solution P (t) ∈ BC([t0,∞),X+) such that

a1 := sup
t∈[t0,∞)

‖A1(t)‖ <

√

λmin(Q)

2p
. (4.1)
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Then the control delay system (1.1) is asymptotically stable.

Proof. For simplicity of expression, let t0 = 0. Let 0 < Q ∈ L(X), P (t) ∈
BC([0,∞),X+) satisfy the Riccati equation (2.2), where R = I. Let

u(t) = K(t)x(t), (4.2)

where K(t) = −1
2B∗(t)P (t), t ≥ 0.

For some number α ∈ (0, 1) to be chosen later, we consider a Lyapunov
function, for the delay system (1.1),

V (t, xt) = 〈P (t)x(t), x(t)〉 + α

∫ t

t−h

〈Qx(s), x(s)〉ds.

Since Q > 0 and P (t) ∈ BC([0,∞),X+), it is easy to verify that

c1‖x(t)‖2 ≤ V (t, xt) ≤ c2‖xt‖
2,

for some positive constants c1, c2. On the other hand, taking the derivative of
V (t, xt) along the solution x(t) of the system, we have

V̇ (t, xt) =〈Ṗ (t)x(t), x(t)〉 + 2〈P (t)ẋ(t), x(t)〉

+ α[〈Qx(t), x(t)〉 − 〈Qx(t − h), x(t − h)〉].
(4.3)

Substituting the control (4.2) into (4.3) gives

V̇ (t, xt) = −(1 − α)〈Qx(t), x(t)〉 + 2〈P (t)A1(t)x(t − h), x(t)〉

−α〈Qx(t − h), x(t − h)〉.

From Proposition 3.1 it follows that

λmin(Q)‖x‖2 ≤ 〈Qx, x〉 ≤ λmax(Q)‖x‖2, x ∈ X,

where λmin(Q) > 0. Therefore,

V̇ (t, xt) ≤ −λmin(Q)(1−α)‖x‖2 +2pa1‖x(t−h)‖‖x(t)‖−λmin(Q)α‖x(t−h)‖2.

By completing the square, we obtain

2pa1‖x(t − h)‖‖x(t)‖ − λmin(Q)α‖x(t − h)‖2

= −
[

√

αλmin(Q)‖x(t − h)‖ −
pa1

√

αλmin(Q)
‖x(t)‖

]2
+

p2a2
1

αλmin(Q)
‖x(t)‖2.

Therefore,

V̇ (t, xt) ≤ −λmin(Q)(1 − α)‖x(t)‖2 +
p2a2

1

αλmin(Q)
‖x(t)‖2

= −
[

λmin(Q)(1 − α) −
1

αλmin(Q)
p2a2

1

]

‖x(t)‖2.

Since the maximum value of α(1−α) in (0, 1) is attained at α = 1/2, from (4.1)



416 K. Ratchagit

it follows that for some c3 > 0,

V̇ (t, xt) ≤ −c3‖x(t)‖2, ∀t ≥ t0.

The the present proof is complete by using Proposition 3.2.

References

[1] A. Benabdallah, M.A. Hammami, On the output feedback stability of non-
linear uncertain control systems, Int. J of Control, 74 (2001), 547-551.

[2] A. Bensoussan, G.Da Prato, M.C. Delfour, S.K. Mitter, Representation and

Control of Infinite-dimensional Systems, Volume II, Birkhäuser (1992).
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