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1. Introduction

Recall (see [2, 7, 11, 13, 14, 16, 17]) that a positive function f is called logarith-
mically completely monotonic on an interval I if f has derivatives of all orders
on I and its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (1.1)

for all k ∈ N on I. If the inequality (1.1) is strict, then f is called strictly
logarithmically completely monotonic. The set of the logarithmically complete
monotonic functions on I is denoted by L[I].

It is worthwhile to note that there have been a lot of literature on log-
arithmically completely monotonic functions related to the gamma function,
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psi function or polygamma function. Althought it is not practicable to read
all of these papers, we still would like to offer some of them, for example
[3, 4, 5, 9, 12, 15, 19] and the references therein, to the readers.

It is well known that the classical Eulers gamma function Γ(x) is defined
for x > 0 as

Γ(x) =

∫ ∞

0
e−ttx−1dt. (1.2)

The logarithmic derivative of Γ(x), denoted by

ψ(x) =
Γ′(x)

Γ(x)
, (1.3)

is called the psi or digamma function, and ψ(n)(x) for n ∈ N are known as
the polygamma or multigamma functions. These functions play central roles in
the theory of special functions and have lots of extensive applications in many
branches, for example, statistics, physics, engineering, and other mathematical
sciences.

In [6] and [8], while ones studied certain problems of traffic flow, the follow-
ing double inequality was obtained for n ∈ N

2Γ

(

n+
1

2

)

≤ Γ

(

1

2

)

Γ(n+ 1) ≤ 2nΓ

(

n+
1

2

)

, (1.4)

which can be rearranged for n > 1 as

1 ≤
[

Γ(1/2)Γ(n + 1)

2Γ(n+ 1/2)

]1/(n−1)

≤ 2. (1.5)

In [20], by using the following double inequality due to J. Wendel in [21]:
(

x

x+ a

)1−a

≤ Γ(x+ a)

xaΓ(x)
≤ 1 (1.6)

for 0 < a < 1 and x > 0, inequality (1.4) was extended and refined as

√
x ≤ Γ(x+ 1)

Γ(x+ 1/2)
≤

√

x+
1

2
(1.7)

for x > 0.

The left hand side inequality in (1.6) reminds us to introduce

ha(x) =
(x+ a)1−aΓ(x+ a)

xΓ(x)
(1.8)

for x > 0 and a > 0. F. Qi et al [18] have discussed its logarithmically complete
monotonicity.

In order to obtain a refined upper bound in (1.6), F. Qi et al [18] have
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studied the logarithmically complete monotonicity of the function

fa(x) =
Γ(x+ a)

xaΓ(x)
(1.9)

the middle term in (1.6), for x ∈ (0,∞) and a ∈ (0,∞).

For a given number b ≥ 0 and a, r ∈ R with r 6= 0, define

ha,r(x) =

[

(x+ a)1−aΓ(x+ a)

xΓ(x)

]r

(1.10)

and

fa,b,r(x) =

[

Γ(x+ a)

xaΓ(x)

(

1 +
b

x

)x+b
]r

(1.11)

for x ∈ (0,∞).

In [18], the following conclusions were established :

(1) ha,1(x) ∈ L[(0,∞)] if 0 < a < 1;

(2) [ha,1(x)]
−1 ∈ L[(0,∞)] if a > 1;

(3) fa,0,1(x) ∈ L[(0,∞)] and limx→0+ fa,0,1(x) = ∞ if a > 1;

(4) [fa,0,1(x)]
−1 ∈ L[(0,∞)] and limx→0+ fa,0,1(x) = 0 if 0 < a < 1;

(5) limx→∞ fa,0,1(x) = 1 if any a ∈ (0,∞).

In this article, a sufficient condition such that ha,r(x) and fa,b,r(x) are
strictly logarithmically complete monotonic functions on (0,∞) will be estab-
lished, which extends some known results mentioned above.

2. Main Results

Theorem 2.1. If 0 < a < 1 and r > 0 then the function ha,r(x) defined
by (1.10) is strictly logarithmically complete monotonic function on (0,∞).
Moreover,

lim
x→0+

ha,r(x) =

[

Γ(a+ 1)

aa

]r

and lim
x→∞

ha,r(x) = 1,

for any a > 0.

Proof. It is clear that

lnha,r(x) = r [(1 − a) ln(x+ a) + ln Γ(x+ a) − ln Γ(x+ 1)] (2.1)

and

[lnha,r(x)]
′ =

1 − a

x+ a
+ ψ(x+ a) − ψ(x+ 1). (2.2)
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The following formulas are known (see [10], p. 884): For n ∈ N and x ∈ (0,∞),

1

xn
=

1

Γ(n)

∫ ∞

0
tn−1e−xtdt (2.3)

and

ψ(n)(x) = (−1)n+1

∫ ∞

0

tn

1 − e−t
e−xtdt. (2.4)

Hence, for n ∈ N, an easy computation yields

[lnha,r(x)]
(n) = r

[

(−1)n−1(n− 1)!(1 − a)

(x+ a)n
+ ψ(n−1)(x+ a) − ψ(n−1)(x+ 1)

]

= (−1)nr

[

(a− 1)(n − 1)!

(x+ a)n
+ (−1)nψ(n−1)(x+ a) − (−1)nψ(n−1)(x+ 1)

]

−(−1)2n

∫ ∞

0

tn−1

1 − e−t
e−(x+1)tdt

]

= (−1)nr

[

∫ ∞

0

e−(x+a)ttn−1

1 − e−t

{

(a− 1)(1 − e−t) + 1 − e(a−1)t
}

dt

]

, (−1)n
∫ ∞

0

e−(x+a)ttn−1

1 − e−t
g(t)dt, (2.5)

where

g(t) := r
[

(a− 1)(1 − e−t) + 1 − e(a−1)t
]

.

Direct computations show that

g′(t) = r
[

(a− 1)e−t(1 − eat)
]

.

It is easy to see that the function g(t) is strictly increasing in (0,∞) and
lim

t→0+
g(t) = 0. Consequently, if 0 < a < 1 and r > 0 then g(t) is a positive in

(0,∞). In view of (2.5), we have

(−1)n [lnha,r(x)]
(n) > 0

for x ∈ (0,∞).

Moreover, using the differences equation Γ(x+ 1) = xΓ(x) and taking limit
directly gives

lim
x→0+

ha,r(x) = lim
x→0+

[

(x+ a)1−aΓ(x+ a)

Γ(x+ 1)

]r

=

[

Γ(a+ 1)

aa

]r

.

It is well known that, as x→ ∞, the following asymptotic formula holds :

xb−a Γ(x+ a)

Γ(x+ b)
= 1 +

(a− b)(a+ b− 1)

2x
+O

(

1

x

)

(see [1], p. 257), (2.6)
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where a and b are two constants. Using the asymptotic expansion (2.6) yields

lim
x→∞

ha,r(x) = lim
x→∞

[

(x+ a)1−aΓ(x+ a)

Γ(x+ 1)

]r

= lim
x→∞

[

(

1 +
a

x

)−a
(

1 +
a(a+ 1)

2x
+O

(

1

x

))]r

= 1,

for a > 0. This completes the proof. �

Corollary 2.1. If a > 1 and r < 0 then ha,r(x) is strictly logarithmically
completely monotonic function on (0,∞).

Theorem 2.2. If a > 1, r > 0 and b ∈ [0,∞) then the function fa,b,r(x)
defined by (1.11) is strictly logarithmically complete monotonic function on
(0,∞). Moreover,

lim
x→0+

fa,b,r(x) = ∞ and lim
x→∞

fa,b,r(x) = ebr.

Proof. Suppose that a > 1, r > 0 and b ∈ (0,∞). It is clear that

ln fa,b,r(x) = r

[

ln Γ(x+ a) − ln Γ(x) − a lnx+ (x+ b) ln

(

1 +
b

x

)]

(2.7)

and

[ln fa,b,r(x)]
′ = r

[

ψ(x+ a) − ψ(x) − a

x
+ ln(x+ b) − lnx− b

x

]

. (2.8)

Using (2.3) and (2.4), we have

(−1)n [ln fa,b,r(x)]
(n) = (−1)nr

[

ψ(n−1)(x+ a) − ψ(n−1)(x) +
(−1)n(n− 1)!a

xn

+
(−1)n−2(n − 2)!

(x+ b)n−1
− (−1)n−2(n− 2)!

xn−1
− (−1)n−1b(n− 1)!

xn

]

= r

[

∫ ∞

0

e−(x+a)ttn−1

1 − e−t
dt−

∫ ∞

0

e−xttn−1

1 − e−t
dt +

∫ ∞

0
ae−xttn−1dt

+

∫ ∞

0
tn−2e−(x+b)tdt−

∫ ∞

0
tn−2e−xtdt+ b

∫ ∞

0
tn−1e−xtdt

]

,

∫ ∞

0

tn−1

1 − e−t
s(t)e−xtdt+

∫ ∞

0
tn−2e−(x+b)tg(t)dt, (2.9)

where

s(t) := r
[

e−at − 1 + a(1 − e−t)
]

and

g(t) := r
[

btebt − ebt + 1
]

.
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It is clear that s′(t) = ra
[

1 − e(1−a)t
]

e−t and g′(t) = rb2tebt. Consequently, if
a > 1, r > 0 and b > 0 then s′(t) and g′(t) are positive on (0,∞), i.e., s(t) and
g(t) are strictly increasing in (0,∞). It is easy to see that lim

t→0+
s(t) = 0 and

lim
t→0+

g(t) = 0, then we have s(t) > 0 and g(t) > 0 for t ∈ (0,∞).

In view of (2.9), we have

(−1)n [ln fa,b,r(x)]
(n) > 0

for x ∈ (0,∞).

In the case b = 0, we consider

fa,0,r(x) =

[

Γ(x+ a)

xaΓ(x)

]r

. (2.10)

By the same process as above, we can show that

(−1)n [ln fa,0,r(x)]
(n) > 0

for x ∈ (0,∞).

Moreover, from

fa,b,r(x) =

[

Γ(x+ a)

xaΓ(x)

(

1 +
b

x

)x+b
]r

,

it follows that

lim
x→0+

fa,b,r(x) =

{

0, 0 < a < 1;
∞, a > 1.

And applying (2.6) reveals

Γ(x+ a)

xaΓ(x+ b)
= 1 +

a(a− 1)

2x
+O

(

1

x

)

,

and we obtain fa,b,r(x) → ebr as x→ ∞. This completes the proof. �

Corollary 2.2. If 0 < a < 1, r < 0 and b ∈ [0,∞) then fa,b,r(x) is strictly
logarithmically completely monotonic functions on (0,∞).
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