IJPAM: Volume 66, No. 2 (2011)

OUTPUT OBSERVABILITY OF
GENERALIZED LINEAR SYSTEMS

M$^{\text{a}}$ Isabel García-Planas$^1$, Sonia Tarragona$^2$
$^{1,2}$Universitat Politècnica de Catalunya
C. Minería 1, Esc C, $1^{\mbox{o}}$-$3^{\mbox{a}}$
Barcelona, 08038, SPAIN
e-mail: maria.isabel.garcia@upc.edu


Abstract.In this paper we consider finite-dimensional generalized linear discrete-time-invariant systems in the form $ E\dot x(k+1)= Ax(k)+Bu(k)$, $y(k)=Cx(k)$ where $E,A\in M=M_{n}(C)$, $B\in M_{n\times m}(C)$, $C\in M_{p\times n}(C)$, describing convolutional codes. The notion of output observability is analyzed and a characterization of output observable systems is obtained.

Received: October 31, 2010

AMS Subject Classification: 15A21, 93B52

Key Words and Phrases: generalized linear systems, output observability, output controllability

Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2011
Volume: 66
Issue: 2