International Journal of Pure and Applied Mathematics Volume 67 No. 1 2011, 29-34

WEIGHTED COMPOSITION OPERATORS AND HYPERCYCLICITY

B. Yousefi

Department of Mathematics Payame-Noor University Shahrake Golestan, P.O. Box 71955-1368, Shiraz, IRAN e-mail: b_yousefi@pnu.ac.ir

Abstract: In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Banach function space to be hypercyclic.

AMS Subject Classification: 47B37, 47B33

Key Words: hypercyclic vector, hypercyclicity criterion, weighted composition operator, multiplication operator

1. Introduction

From now on let X be a Banach space of functions analytic on the open unit disc \mathbb{D} such that for each λ in \mathbb{D} the linear functional of evaluation at λ given by $e_{\lambda}(f) = f(\lambda)$ is a bounded linear functional on X.

Let T be a bounded linear operator on X. For $f \in X$, the orbit of f under T is the set of images of f under the successive iterates of T: $orb(T, f) = \{f, Tf, T^2f, \ldots\}$. The vector f is called hypercyclic for T if orb(T, f) is dense in X. Also a hypercyclic operator is one that has a hypercyclic vector.

A complex-valued function ψ on \mathbb{D} is called a multiplier of X if $\psi X \subset X$. The operator of multiplication by ψ is denoted by M_{ψ} and is given by $f \longrightarrow \psi f$. By the closed graph theorem M_{ψ} is bounded.

If w is a multiplier of X and φ is a mapping from \mathbb{D} into G such that $f \circ \varphi \in X$ for all $f \in X$, then $M_w C_{\varphi}$ defined by $M_w C_{\varphi} f = w.f \circ \varphi$ is called a weighted composition operator. We define the iterates $\varphi_n = \varphi \circ \varphi \circ \ldots \circ \varphi$

Received: November 3, 2010

© 2011 Academic Publications

(n times). In this paper we investigate the property of hypercyclicity criterion for the adjoint of a weighted composition operator acting on a Banach space of analytic functions. For some sources on hypercyclic topics, see [1]-[14].

2. Main Results

The formulation of the hypercyclicity criterion in the following theorem was given by J. Bes in his Ph.D. Thesis (see [1], also [2]).

Theorem 1. (The Hypercyclicity Criterion) Suppose X is a separable Banach space and $T \in B(X)$. If there exist two dense subsets Y and Z in X and a sequence $\{n_k\}$ such that:

1. $T^{n_k}y \to 0$ for every $y \in Y$, and

- 2. There exist functions $S_{n_k}: Z \to X$ such that for every $z \in Z, S_{n_k}z \to Z$
- 0, and $T^{n_k}S_{n_k}z \to z$,

then T is hypercyclic.

Throughout this section let $w : \mathbb{D} \to \mathbb{C}$ be a non-constant multiplier of Xand φ be an analytic univalent map from \mathbb{D} onto \mathbb{D} . By φ_n^{-1} we mean the *n*-th iterate of φ^{-1} .

Theorem 2. Suppose that the composition operator C_{φ} is bounded on X and w is a nonconstant multiplier of X such that the sets $E_m = \{\lambda \in \mathbb{D} : \prod_{i=1}^{\infty} w(\varphi_i^m(\lambda))^m = 0\}$ have limit points in \mathbb{D} for m = -1, 1. If for each $\lambda \in E_m$ the sequence $\{K_{\varphi_i^m(\lambda)}\}_i$ is bounded for m = -1, 1, then $(M_w C_{\varphi})^*$ hypercyclic.

Proof. Put $A = M_w C_{\varphi}$ and $\varphi_0 = I$ where I is the identity mapping on \mathbb{D} . Then for all $n \in \mathbb{N}$ and all λ in \mathbb{D} we get $(A^*)^n e_{\lambda} = \left(\prod_{i=0}^{n-1} w(\varphi_i(\lambda))\right) e_{\varphi_n(\lambda)}$. Put $X_{E_m} = span\{e_{\lambda} : \lambda \in E_m\}$ for m = -1, 1. If $\lambda \in E_1$, then we have $\prod_{i=0}^{\infty} w(\varphi_i(\lambda)) = 0$ and so $\lim_n (A^*)^n e_{\lambda} = 0$. Thus $(A^*)^n \longrightarrow 0$ pointwise on X_{E_1} that is dense in X^* because the zeros of f has limit point in \mathbb{D} . First consider the special case where the collection of linear functionals of point evaluations $\{e_{\lambda} : \lambda \in E_{-1}\}$ is linearly independent. Define $B : X_{E_{-1}} \longrightarrow X^*$ by extending the definition

$$Be_{\lambda} = (w(\varphi^{-1}(\lambda)))^{-1}e_{\varphi^{-1}(\lambda)} \qquad (\lambda \in E_{-1})$$

linearly to $X_{E_{-1}}$. Clearly $B^n e_{\lambda} = (\prod_{i=1}^n (w(\varphi_i^{-1}(\lambda)))^{-1}) \cdot e_{\varphi_n^{-1}(\lambda)}$, where φ_i^{-1} is the *i*-th iterate of φ^{-1} and $n \in \mathbb{N}$. By the definition of B we have $A^*Be_{\lambda} =$

 $A^*((w(\varphi^{-1}(\lambda)))^{-1}e_{\varphi^{-1}(\lambda)}) = e_{\varphi(\varphi^{-1}(\lambda))} = e_{\lambda}$ for all λ in E_{-1} . Thus A^*B is identity on the dense subset $X_{E_{-1}}$ of X^* . Note that if $\lambda \in E_{-1}$, then $\lim_n(\prod_{i=1}^n |w(\varphi_i^{-1}(\lambda))|^{-1}).e_{\varphi_n^{-1}(\lambda)} = 0$. This implies that $B^n \longrightarrow 0$ pointwise on $X_{E_{-1}}$ that is dense in X^* . Thus $A^* = (M_w C_{\varphi})^*$ satisfies the hypercyclicity criterion and so is hypercyclic.

In the case that linear functionals of point evaluations are not linearly independent, by the same way we can use a standard method as in Theorem 4.5 in [6] to complete the proof: consider a countable dense subset $F_1 = \{\lambda_n : n \ge 1\}$ of E_{-1} and inductively choose a subsequence $\{z_n\}$ as follows. Let $z_1 = \lambda_1$. Now define $F_2 = F_1 \setminus \{\lambda \in F_1 : e_\lambda \in span\{e_{z_1}\}\}$. Denote the first element of F_2 by z_2 and define $F_3 = F_2 \setminus \{\lambda \in F_2 : e_\lambda \in span\{e_{z_1}, e_{z_2}\}\}$. By continuing this manner, we obtain a subset $G = \{z_n\}_n$ of E_{-1} for which the set $X_G = span\{e_\lambda : \lambda \in G\}$ is dense in X^* with linearly independent linear functionals of point evaluations $\{e_\lambda : \lambda \in G\}$. Now for each $n \in \mathbb{N}$, define the mappings $S_n : X_G \longrightarrow X^*$ by extending the definition

$$S_n e_{\lambda} = (\prod_{i=1}^n (w(\varphi_i^{-1}(\lambda)))^{-1}) e_{\varphi_n^{-1}(\lambda)} \qquad (\lambda \in G)$$

linearly to X_G . Note that if we substitute $\varphi_n^{-1}(\lambda)$ instead of λ in the formula obtained earlier for $(A^*)^n e_{\lambda}$, we get

$$(A^*)^n e_{\varphi_n^{-1}(\lambda)} = \left(\prod_{i=0}^{n-1} w(\varphi_i(\varphi_n^{-1}(\lambda)))\right) e_{\varphi_n(\varphi_n^{-1}(\lambda))}$$
$$= \prod_{i=1}^n (w(\varphi_i^{-1}(\lambda))) e_{\lambda}$$

for all λ in G. Now by the definition of S_n we have

$$(A^*)^n S_n e_{\lambda} = (A^*)^n ((\prod_{i=1}^n (w(\varphi_i^{-1}(\lambda)))^{-1}) e_{\varphi_n^{-1}(\lambda)}) = e_{\lambda}$$

for all λ in G. Thus for all $n \in \mathbb{N}$, $(A^*)^n S_n$ is identity on the dense subset X_G of X^* . Also, exactly as before it is proved that $B^n \longrightarrow 0$ pointwise on $X_{E_{-1}}$, we can see that $S_n \longrightarrow 0$ pointwise on X_G that is dense in X^* . This completes the proof.

Corollary 3. Suppose that h is a nonconstant multiplier of X such that range of h intersects the unit circle. Then the adjoint of the multiplication operator M_h satisfies the hypercyclicity criterion.

Proof. In Theorem 2, let φ be identity and w = h. Then $\varphi_n(\lambda) = \lambda$ and $\varphi_n^{-1}(\lambda) = \lambda$ for all λ in \mathbb{D} . Also, we note that the condition $1 \in X$ implies that $h \in X$ and so h is analytic on the open unit disc \mathbb{D} . Now by the Open Mapping Theorem $h(\mathbb{D})$ is open. But ran $h = h(\mathbb{D})$ intersects the unit circle, thus for m = -1, 1, the sets $F_m = \{\lambda \in \mathbb{D} : |h(\lambda)|^m < 1\}$ are nonempty and open sets in \mathbb{D} and so clearly have limit points in \mathbb{D} . But $F_m \subset E_m$ where $E_m = \{\lambda \in \mathbb{D} : \prod_{i=1}^{\infty} h(\lambda)^m = 0\}$ for m = -1, 1. Now we can apply the proof of Theorem 2, and so the proof follows immediately.

From now on we suppose that for some $n \ge 1$, $\varphi_n = \varphi_0$.

Corollary 4. If ran $(\prod_{i=0}^{n-1} w \circ \varphi_i)$ intersects the unit circle, then the adjoint of the operator $(M_w C_{\varphi})^n$ satisfies the hypercyclicity criterion.

Proof. Put $A = M_w C_{\varphi}$. Then for all $n \in \mathbb{N}$ and all λ in \mathbb{D} we get

$$(A^*)^n e_{\lambda} = \left(\prod_{i=0}^{n-1} \overline{w(\varphi_i(\lambda))}\right) e_{\varphi_n(\lambda)} = \left(\prod_{i=0}^{n-1} \overline{w(\varphi_i(\lambda))}\right) e_{\lambda}.$$

Put $h = \prod_{i=0}^{n-1} w(\varphi_i(\lambda))$. Thus $(A^*)^n = (M_h)^*$. Since the range of h intersects the unit circle, by Corollary 3, $(M_h)^*$ and so $(A^*)^n$ satisfies the hypercyclicity criterion.

Corollary 5. If there exists $\lambda_0 \in \mathbb{D}$ such that $|w \circ \varphi_i(\lambda_0)| = 1$ for all i = 1, ..., n, then the adjoint of the weighted composition operator $(M_w C_{\varphi})^n$ satisfies the hypercyclicity criterion.

Proof. Note that $\varphi_{-n} = \varphi_0$. For each m = -1, 1, the set $\{\lambda \in \mathbb{D} : |w(\varphi_i^m(\lambda))|^m < 1, i = 1, ..., n\}$ contains a nonempty open subset of \mathbb{D} . Since for all $\lambda \in \mathbb{D}$, the set $\{K_{\varphi_i^m(\lambda)} : i \ge 0\}$ is finite for m = -1, 1, thus by Theorem 2, the proof is complete.

Lemma 6. If $(M_w C_{\varphi})^*$ is hypercyclic, then the closure of ran $(\prod_{i=0}^{n-1} w \circ \varphi_i)$ intersects the unit circle.

Proof. Put $A = M_w C_{\varphi}$ and note that $(A^*)^n$ is hypercyclic. Clearly, $(A^*)^n = (M_h)^*$ where $h = \prod_{i=0}^{n-1} w(\varphi_i(\lambda))$. Thus $(M_h)^*$ is hypercyclic and so its spectrum intersects the unit circle. This completes the proof.

References

- J. Bes, *Three Problems on Hypercyclic Operators*, Ph.D. Thesis, Kent State University (1998).
- [2] J. Bes, A. Peris, Hereditarily hypercyclic operators, J. Func. Anal., 167, No. 1 (1999), 94-112.
- [3] P.S. Bourdon, Orbits of hyponormal operators, Mich. Math. Journal, 44 (1997), 345-353.
- [4] P.S. Bourdon, J.H. Shapiro, Hypercyclic operators that commute with the Bergman backward shift, *Trans. Amer. Math. Soc.*, **352**, No. 11 (2000), 5293-5316.
- [5] R.M. Gethner, J.H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, *Proc. Amer. Math. Soc.*, **100** (1987), 281-288.
- [6] G. Godefroy, J.H. Shapiro, Operators with dense, invariant cyclic vector manifolds, *Journal of Functional Analysis*, 98 (1991), 229-269.
- [7] K. Goswin, G. Erdmann, Universal families and hypercyclic operators, Bulletin of the American Mathematical Society, 35 (1999), 345-381.
- [8] C. Kitai, Invariant Closed Sets for Linear Operators, Thesis, University of Toronto (1982).
- C. Read, The invariant subspace problem for a class of Banach spaces, 2: Hypercyclic operators, *Israel J. Math.*, 63 (1988), 1-40.
- [10] H.N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347 (1995), 993-1004.
- [11] B. Yousefi, H. Rezaei, Some necessary and sufficient conditions for hypercyclicity criterion, *Proc. Indian Acad. Sci. (Math. Sci.)*, **115**, No. 2 (2005), 209-216.
- [12] B. Yousefi, S. Haghkhah, Hypercyclicity of special operators on Hilbert function spaces, *Czechoslovak Mathematical Journal*, 57, No. 132 (2007), 1035-1041.
- [13] B. Yousefi, R. Soltani, Hypercyclicity of the adjoint of weighted composition operators, *Proc. Indian Acad. Sci. (Math. Sci.)*, **119**, No. 3 (2009), 513-519.

B. Yousefi

[14] B. Yousefi, F. Khedri, Hypercyclicity of multiple weighted composition operators, *International Journal of Applied Mathematics*, 23, No. 3 (2010), 413-417.

34