A GENERALIZATION OF Rad-SUPPLEMENTED MODULES

Burcu Nişancı Türkmen¹§, Ali Pancar²

¹,²Department of Mathematics
Faculty of Arts and Sciences
Ondokuz Mayis University
Samsun, 55139, TURKEY
¹e-mail: burcun@omu.edu.tr
²e-mail: apancar@omu.edu.tr

Abstract: We study some properties of (amply) f-Rad-supplemented modules and fwrs-modules as a proper generalization of (amply) Rad-supplemented. We show that: (1) any finite direct sum of finitely generated, projective f-Rad-supplemented modules is f-Rad-supplemented; (2) a locally Noetherian f-Rad-supplemented module is f-supplemented; (3) any generalized cover of a fwrs-module is fwrs.

AMS Subject Classification: 16D10, 16D99
Key Words: Rad-supplement, f-Rad-supplemented module

1. Introduction

Throughout this paper all rings R are associative with identity element and all modules are unital left R–modules. Let R be a ring and let M be an R-module. The notation $N \leq M$ means that N is a submodule of M. A submodule N of a module M is called small in M, denoted by $N \ll M$, if $N + L \neq M$ for every proper submodule L of M, see [9]. By $\text{Rad}(M)$, i.e. the Jacobson radical of M, we indicate the sum of all small submodules of M, see [9]. Let M be an R-module and let U and K be any submodules of M. K is called a supplement of N in M if $M = N + K$ and $N \cap K \ll K$. In this case we say that N has a supplement in M. Following [9], M is called supplemented if every submodule of M has a supplement in M, and M is called finitely supplemented or briefly f-supplemented if every finitely generated submodule of M has a supplement in

Received: February 26, 2011 © 2011 Academic Publications

§Correspondence author
M. M is called amply supplemented if, for any submodules U and V of M with $M = U + V$, V contains a supplement of U in M. Similarly M is called amply f-supplemented if every finitely generated submodule of M satisfies this condition. It is clear that (amply) f-supplemented modules are a proper generalization of (amply) supplemented modules.

Lomp [6] calls a module M semilocal if $M/\text{Rad}(M)$ is semisimple and a ring R is called semilocal if the left (or right) R-module R is semilocal. He show [6, Theorem 3.5] that R is semilocal if and only if every left R-module is semilocal.

In [4, Theorem 10.14], another generalization of supplement submodule is called as Rad-supplement (according to [10], generalized supplement). For a modules M and N, K be any submodules with $M = N + K$, K is called a Rad-supplement of N in M if $N \cap K \subseteq \text{Rad}(K)$. M is called Rad-supplemented (according to [10], amplified generalized supplemented) if every submodule has a Rad-supplement in M, and M is called amply Rad-supplemented (according to [10], amply generalized supplemented) in case $M = K + L$ implies that K has a generalized supplement $L' \leq L$. In addition, it is shown [10, Proposition 2.5 and Proposition 2.6 (1)] that the class of Rad-supplemented modules is closed under finite sums and factor modules. Every supplemented module is Rad-supplemented but it is not generally true that every Rad-supplemented module is supplemented. Let R be a non-local Dedekind domain with quotient field K. Then the left R-module K is Rad-supplemented, but it is not supplemented. Let M be a module. M is called weakly Rad-supplemented if every submodule U of M has a weak Rad-supplement V in M, i.e. $M = U + V$ and $U \cap V \subseteq \text{Rad}(M)$ for some submodule V of M. Clearly, Rad-supplemented modules and weakly supplemented modules are weakly Rad-supplemented. It is shown in [6, Proposition 2.1] that a module M is semilocal if and only if the module is weakly Rad-supplemented.

This note consists of two sections. In Section 2, we introduce (amply) f-Rad-supplemented modules as a proper generalization of (amply) Rad-supplemented modules. We obtain various properties of such modules through known properties of (amply) f-supplemented. In Section 3, we study finitely weak Rad-supplemented modules which is a proper generalization of weakly Rad-supplemented modules.
2. f-Rad-Supplemented Modules and Amply f-Rad-Supplemented Modules

In this section, we define the concept of (amply) finitely Rad-supplemented modules, which is adapted from (amply) f-supplemented modules, and we give the properties of these modules.

Definition 2.1. Let M be an R-module. M is called **finitely Rad-supplemented** or briefly **f-Rad-supplemented** if every finitely generated submodule of M has a Rad-supplement in M, and M is called **amply f-Rad-supplemented** if every finitely generated submodule of M has ample Rad-supplements in M.

It is clear that every Rad-supplemented module is f-Rad-supplemented and every amply Rad-supplemented module is amply f-Rad-supplemented. Also, Noetherian (amply) f-Rad-supplemented is (amply Rad-) supplemented. The following example shows that a f-Rad-supplemented module is not Rad-supplemented. Note that Von Neuman regular rings are f-Rad-supplemented.

Example 2.2. (see [2]) Let F be any field. Consider the commutative ring R which is the direct product $\prod_{i=1}^{\infty} F$, where $F_i = F$. So R is a Von Neuman regular ring which is not semisimple. Thus R is f-Rad-supplemented.

Since Rad-supplemented modules with zero radical is semisimple, R is not Rad-supplemented.

Now we show some properties of (amply) f-Rad-supplemented modules.

We do not know whether the finite sum of f-Rad-supplemented modules is f-Rad-supplemented but we have the following theorem. Firstly we need to the following standard lemma.

Lemma 2.3. Let M be an R-module and let U, M_1 be submodules of M such that U is finitely generated, M_1 is f-Rad-supplemented. If $M_1 + U$ has a Rad-supplement X in M such that $M_1 \cap (U + X)$ is finitely generated and $M_1 \cap (U + X)$ has a Rad-supplement Y in M_1, then $X + Y$ is a Rad-supplement of U in M.

Proof. Let X be a Rad-supplement of $M_1 + U$ in M. Then $M = (M_1 + U) + X$ and $(M_1 + U) \cap X \subseteq \text{Rad}X$. By assumption, $M_1 \cap (U + X)$ is finitely generated submodule of M_1. Since M_1 is a f-Rad-supplemented module, $M_1 \cap (U + X)$ has a Rad-supplement Y in M_1. Note that

$$M_1 = M_1 \cap (U + X) + Y$$

and

$$M_1 \cap (U + X) \cap Y \subseteq \text{Rad}Y.$$
Then \(M = U + X + Y \) and \(U \cap (X + Y) \subseteq \text{Rad}(X + Y) \). Thus \(X + Y \) is a Rad-supplement of \(U \) in \(M \).

Theorem 2.4. Let \(M \) be an \(R \)-module and \(M = M_1 \oplus M_2 \), where \(M_1, M_2 \) are finitely generated \(f \)-Rad-supplemented modules. If \(M \) is a self projective module, \(M \) is a \(f \)-Rad-supplemented module.

Proof. Let \(U \) be a finitely generated submodule of \(M \). Since \(M \) is a self projective module, \(M_1 \) and \(M_2 \) are \(M \)-projective. While \(M_1 \) is \(M \)-projective, \(M_1 \) is \((M_1 + U)\)-projective for a short exact sequence
\[
0 \to M_1 + U \to M \to M/(M_1 + U) \to 0 \text{ by [9, 18.2(1)]}.
\]

Note that
\[
M_1 \cong M/M_2 = (M_1 + U)/(M_2 \cap (M_1 + U))
\]
and so \((M_1 + U)/(M_2 \cap (M_1 + U))\) is \((M_1 + U)\)-projective. It follows that \(M_2 \cap (M_1 + U) \) is a direct summand of \(M_1 + U \). Then there exists a submodule \(L \) of \(M_1 + U \) such that \((M_1 + U)/L \cong M_2 \cap (M_1 + U)\). It is clear that \(M_2 \cap (M_1 + U) \) is finitely generated. Since \(M_2 \) is \(f \)-Rad-supplemented module, \(M_2 \cap (M_1 + U) \) has a Rad-supplement \(X \) in \(M_2 \). By Lemma 2.3, \(X \) is a Rad-supplement of \(M_1 + U \) in \(M \). Then \(M = M_1 + U + X \), \((M_1 + U) \cap X \subseteq \text{Rad}X \). It follows that \((M_1 + U) \cap X \subseteq \text{Rad}M_2 \). In addition \(\text{Rad}M_2 \ll M_2 \) by [9, 21.6(4)]. Then \((M_1 + U) \cap X \ll M_2 \). Since \(X \) is a direct summand of \(M_2 \), we have \((M_1 + U) \cap X \ll X \). Note that \(M/(M_1 + U) \cong X/((M_1 + U) \cap X) \). Since \(X/((M_1 + U) \cap X) \) is finitely generated and \((M_1 + U) \cap X \ll X \), \(X \) is finitely generated by [1, 16.12(1)]. While \(M_2 \) is \(M \)-projective, \(M_2 \) is \((X + U)\)-projective for a short exact sequence
\[
0 \to X + U \to M \to M/(X + U) \to 0 \text{ by [9, 18.2(1)]}.
\]
Similarly it is showed that \(M_1 \cap (U + X) \) has a Rad-supplement \(Y \) in \(M_1 \). Again by Lemma 2.3, \(X + Y \) is a Rad-supplement of \(U \) in \(M \). Therefore \(M \) is \(f \)-Rad-supplemented module.

Corollary 2.5. Suppose that finitely generated \(R \)-modules \(M_1, M_2, \ldots, M_n \) are projective \(f \)-Rad-supplemented and let \(M = \oplus_{i=1}^{n} M_i \). Then \(M \) is \(f \)-Rad-supplemented.

Lemma 2.6. (see [8], Lemma 2.3) Let \(M \) be an \(R \)-module and \(V \) be a Rad-supplement of \(U \) in \(M \). Then \((V + L)/L \) is a Rad-supplement of \(U/L \) in \(M/L \) for every submodule \(L \) of \(U \).

Proposition 2.7. Suppose that a submodule \(L \) of a module \(M \) is finitely generated. Then,

1. If \(M \) is a \(f \)-Rad-supplemented module, \(M/L \) is \(f \)-Rad-supplemented.
2. If \(M \) is an amply \(f \)-Rad-supplemented module, \(M/L \) is amply \(f \)-Rad-supplemented.
Proof. (1) Let K/L be a finitely generated submodule of M/L. Then $K/L = \langle \{k_1 + L, k_2 + L, \ldots, k_n + L\} \rangle$, $k_i \in K$, $1 \leq i \leq n$ for some positive integer n. It follows that $K = \langle \{k_1, k_2, \ldots, k_n\} \rangle + L$. It is clear that K is a finitely generated submodule of M. Since M is a f-Rad-supplemented module, K has a Rad-supplement N in M. By Lemma 2.6, $(N + L)/L$ is a Rad-supplement of K/L in M/L. Therefore M/L is a f-Rad-supplemented module.

(2) Let U/L be a finitely generated submodule of M/K. Suppose that $M/L = U/L + V/L$ for some submodule V/L of M/L. Then $M = U + V$. Since U/L and L are finitely generated, U is finitely generated submodule of M. Since M is an amply f-Rad-supplemented module, there exists a Rad-supplement V' of U with $V' \subseteq V$. Again by Lemma 2.6, $(V' + K)/K$ is a Rad-supplement of U/K in M/K. In addition, $(V' + K)/K \subseteq V/K$. Therefore M/K is an amply f-Rad-supplemented module.

Proposition 2.8. Suppose that a submodule V of a module M is a supplement of a finitely generated submodule U of M. If M is an amply f-Rad-supplemented module, then V is an amply f-Rad-supplemented module.

Proof. Let X be a finitely generated submodule of V and let Y be a submodule of V such that $V = X + Y$. By the hypothesis, we have $M = U + V$. It follows that $M = (U + X) + Y$. Since M is an amply f-Rad-supplemented module, there exists a Rad-supplement Y' of $U + X$ with $Y' \subseteq Y$. Then $M = U + X + Y'$ and $(U + X) \cap Y' \subseteq \text{Rad}Y'$. Note that $V = (U \cap V) + (X + Y')$.

Since $U \cap V \ll V$, we have $V = X + Y'$ and $X \cap Y' \subseteq \text{Rad}Y'$. Therefore V is an amply f-Rad-supplemented module.

Corollary 2.9. Suppose that a finitely generated R-module M is amply f-Rad-supplemented. Then, every direct summand of M is amply f-Rad-supplemented.

The following lemma is well known.

Lemma 2.10. Let M be a module. Suppose that a finitely generated submodule U of M is contained in $\text{Rad}(M)$. Then U is a small submodule of M.

Recall from [9] that a module M is called locally Noetherian if every finitely generated submodule is Noetherian. Note that over a Noetherian ring every module is locally Noetherian.

Theorem 2.11. Suppose that an R-module M is locally Noetherian. If M is (amply) f-Rad-supplemented, then M is (amply) f-supplemented.
Proof. Let M be a f-Rad-supplemented module and let U be a finitely submodule of M. Then, there exists a submodule V of M such that $M = U + V$ and $U \cap V \subseteq \text{Rad}V$. By the hypothesis, U is Noetherian. Then $U \cap V$ is finitely generated and so $U \cap V \ll V$ by Lemma 2.10. Thus V is a supplement of U in M, as required. As similar argument shows that M is also an amply f-supplemented module.

Corollary 2.12. Let R be a Noetherian ring and let M be an R-module. If M is (amply) f-Rad-supplemented, then M is (amply) f-supplemented.

Proposition 2.13. Let M be a f-Rad-supplemented module and let N be a submodule of M with $N \cap \text{Rad}(M) = 0$. Then N is regular. In particular, if $\text{Rad}(M) = 0$, then M is regular.

Proof. Let K be any finitely generated submodule of N. Since M is a f-Rad-supplemented module, then $M = K + L$, $K \cap L \subseteq \text{Rad}L$. Note that $N = K + (N \cap L)$ and $K \cap (N \cap L) = 0$. Then $N = K \oplus (N \cap L)$. Hence N is regular. If $\text{Rad}M = 0$, M is regular for $N = M$.

Corollary 2.14. Let M be a f-Rad-supplemented module. Suppose that $\text{Rad}(M)$ is finitely generated. Then $M/\text{Rad}(M)$ is regular.

Proof. Let $\overline{M} = M/\text{Rad}(M)$. Then, by Proposition 2.7, \overline{M} is f-Rad-supplemented. Note that $\text{Rad}(\overline{M}) = 0$. Hence \overline{M} is regular by Proposition 2.13.

3. Finitely Weak Rad-Supplemented Modules

Recall from [1] that a module M is called \textit{finitely weak supplemented} or briefly \textit{fws} if every finitely generated submodule of M has a weak supplement in M. Motivated by this, we define the concept of finitely weak Rad-supplemented modules in this section.

Definition 3.1. Let M be an R-module. M is called \textit{finitely weak} Rad-supplemented or briefly \textit{fwrs} if every finitely generated submodule of M has a weak Rad-supplement in M.

Clearly, both weakly Rad-supplemented modules and fws-modules are fwrs-modules. In addition, Example 2.2 also shows that a fwrs-module need not be weakly Rad-supplemented.

Lemma 3.2. (see [7], Lemma 2.1) Let M be an R-module and let V be a weak Rad-supplement of U in M. Then, $(V + L)/L$ is a weak Rad-supplement of U/L in M/L for every submodule L of U.

The following fact is a modification of Proposition 2.7.
Proposition 3.3. Suppose that a submodule L of a module M is finitely generated. If M is fwrs, then M/L is fwrs.

Proof. Let K/L be a finitely generated submodule of M/L. Since L is finitely generated, K is finitely generated. Since M is a fwrs-module, K has a weak Rad-supplement U in M. By Lemma 3.2, $(U + L)/L$ is a weak Rad-supplement K/L in M/L. Hence M/L is a fwrs-module.

Proposition 3.4. Let M be an R-module. If $N \subseteq \text{Rad} M$ and M/N is a fwrs-module, then M is fwrs.

Proof. Let U be a finitely generated submodule of M. Then $(U + N)/N$ is a finitely generated submodule of M/N. Since M/N is a fwrs-module, we have $M/N = (U + N)/N + V/N$ and $(U + N)/N \cap V/N \subseteq \text{Rad}(M/N)$. It follows that $M = U + V$, $U \cap V \subseteq U \cap V + N \subseteq \text{Rad} M$. Hence M is fwrs.

Recall from [11] that an epimorphism $\alpha : P \to M$ is called a generalized cover if $\ker \alpha \subseteq \text{Rad} P$.

Corollary 3.5. Let M be a fwrs-module and let $f : K \rightarrow M$ be a generalized cover. Then K is a fwrs-module.

Theorem 3.6. Let M be a locally Noetherian module. If M is fwrs, then M is fws.

Proof. Let U be a finitely generated submodule of M. Since M is a fwrs-module, there exists a submodule V of M such that $M = U + V$ and $U \cap V \subseteq \text{Rad} M$. Since M is a locally noetherian module, $U \cap V$ is a finitely generated. Then $U \cap V \ll M$ by Lemma 2.10. Hence M is fws.

Corollary 3.7. Let R be a Noetherian ring and let M be an R-module. Then M is fwrs if and only if it is fws.

Proposition 3.8. Let M be a module with small radical. Then M is a fws-module if and only if it is fwrs.

Proof. The necessity of the condition is obvious. Conversely, suppose that M is fwrs. Then, for any submodule U of M, $M = U + V$ and $U \cap V \subseteq \text{Rad} M$ for some submodule V of M. Since $\text{Rad} M \ll M$, by [9, 21.5], $U \cap V \ll M$.

Theorem 3.9. Suppose that a submodule V of a module M is a Rad-supplement in M. If M is fwrs, then V is a fwrs-module.

Proof. Let V be a Rad-supplement of U in M and K is a finitely generated submodule of V. Since M is a fwrs-module, there exists a submodule L of M such that $M = K + L$, $K \cap L \subseteq \text{Rad} M$. It follows that $V = K + (V \cap L)$ and $K \cap (V \cap L) \subseteq \text{Rad} M$. Since V is a Rad-supplement of U in M, we have $K \cap (V \cap L) \subseteq \text{Rad} V$. Thus V is a fwrs-module.
A ring R is called a left V-ring if every simple left R-module is injective. It is well known that R is V-ring if and only if, for every left R-module M, $\text{Rad}(M) = 0$. This fact gives the following corollary which is obvious.

Corollary 3.10. Let R be a left V-ring and let M be an R-module. Then the following statements are equivalent.

1. M is f-Rad-supplemented.
2. M is f-supplemented.
3. M is fws.
4. M is fwrs.
5. M is regular.

References

