A BOUNDEDNESS RESULT FOR PFAFF FIELDS

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Fix positive integers s, d, n with $n \geq s + 1$. Let $W \subseteq \mathbb{P}^n$ be an integral and Gorenstein projective variety of dimension $s + 1$ such that $\dim(\text{Sing}(W)) \leq s - 1$. Fix $M, H \in \text{Pic}(W)$ with H ample. Here we prove the existence of an integer $x_0(H, d, M)$ with the following property. Fix any integer $x \geq x_0(H, d, M)$ and any integral $X \in |M \otimes H^{\otimes x}|$ such that $\dim(\text{Sing}(X)) \leq s - 2$; then there is no non-zero Pfaff field $\Omega^s_X \to \mathcal{O}_X(d)$. In particular X is not a solution of a rank s and degree d Pfaff field on \mathbb{P}^n whose singular locus does not contain X.

AMS Subject Classification: 37F75, 14J60, 58A17
Key Words: Pfaff field

Esteves and Kleiman introduced the general set-up of Pfaff systems and Pfaff fields with the right amount of generality ([5]). Let Y be an equidimensional reduced projective variety defined over an algebraically closed field \mathbb{K}. Set $m := \dim(Y)$. Fix an integer $s \in \{1, \ldots, m\}$. A rank s Pfaff field on Y is a map $\Omega^s_Y \to L$, where $L \in \text{Pic}(Y)$. If $Y \subset \mathbb{P}^n$, and $\eta_1 : \Omega^s_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(d)$ is a non-zero rank s Pfaff field, we say that Y is a leaf of η_1 if Y is not completely contained in singular locus of η_1 and η_1 factors through the natural map $\Omega^s_{\mathbb{P}^n} \to \Omega^s_Y$. A question of Poincaré aims to bounds $\deg(Y)$ in terms of d for any leaf Y. As it stands the answer is negative and to give a positive answer we must both bounds the admissible singularities of Y and the cohomology groups of \mathcal{I}_Y ([2], [3], [4], [5] and references therein). In particular [2], Remark 21, gives an example

Received: February 25, 2011 © 2011 Academic Publications, Ltd.
with Y a smooth curve. Here we bound $\deg(Y)$ allowing only codimension 2 singularities, but prescribing that the leaf varies in a fixed $(s + 1)$-dimensional variety. The case $s = n - 1$ is classical (see e.g. [6], [2], [3], [4], [5]).

Theorem 1. Fix an integer $s \geq 1$. Let W be an integral and Gorenstein projective variety of dimension $s + 1$ such that $\dim(\text{Sing}(W)) \leq s - 1$. Fix $L, M, H \in \text{Pic}(W)$ with H ample. Then there exists an integer $x_0(H, L, M)$ with the following property. Fix any integer $x \geq x_0(H, L, M)$ and any integral $X \in |M \otimes H^{\otimes x}|$ such that $\dim(\text{Sing}(X)) \leq s - 2$. Then there is no non-zero Pfaff field $\Omega^*_X \to L|X$.

Taking $W \subset \mathbb{P}^n$, $n \geq s + 1$ and $L := \mathcal{O}_W(d)$ for some integer d we immediately get the following result.

Corollary 1. Fix positive integers s, d, n with $n \geq s + 1$. Let $W \subset \mathbb{P}^n$ be an integral and Gorenstein projective variety of dimension $s + 1$ such that $\dim(\text{Sing}(W)) \leq s - 1$. Fix $M, H \in \text{Pic}(W)$ with H ample. Then there exists an integer $x_0(H, d, M)$ with the following property. Fix any integer $x \geq x_0(H, d, M)$ and any integral $X \in |M \otimes H^{\otimes x}|$ such that $\dim(\text{Sing}(X)) \leq s - 2$. Then there is no non-zero Pfaff field $\Omega^*_X \to \mathcal{O}_X(d)$. In particular X is not a solution of a rank s and degree d Pfaff field on \mathbb{P}^n whose singular locus does not contain X.

Proof of Theorem 1. Fix $x \in \mathbb{Z}$ such that there is $X \in |M \otimes H^{\otimes x}|$ such that $\dim(\text{Sing}(X)) \leq s - 2$ with $\dim(\text{Sing}(X)) \leq s - 2$ and $\eta : \Omega^*_X \to L|X$ such that $\eta \neq 0$. Hence $\text{Coker}(\eta)$ is supported by a closed subscheme of X with dimension at most $s - 1$. For any coherent sheaf F on X let $T(F)$ denote the torsion subsheaf of F. Since L has no torsion, η induces a non-zero map $\eta' : \Omega^*_X/T(\Omega^*_X) \to L$ such that $\text{Im}(\eta') = \text{Im}(\eta)$, i.e. $\text{Coker}(\eta) = \text{Coker}(\eta')$. Thus the map $\eta' : H^s(X, \Omega^*_X/T(\Omega^*_X)) \to H^s(X, L)$ is surjective. In [1], subsection 3.1, the authors defined a scheme-structure on the algebraic set $\text{Sing}(X)$ using the natural map $\Omega^*_X \to \omega_X$, which gives an injective map $\Omega^*_X/T(\Omega^*_X) \to \omega_X$, because ω_X has no torsion ([1], 3.1). Call Σ_X this scheme-structure on $\text{Sing}(X)$. Since W is Gorenstein and X is a Cartier divisor of W, X is Gorenstein. Thus $\Omega^*_X/T(\Omega^*_X) \cong \mathcal{I}_{\Sigma_X} \omega_X$. Hence $H^s(X, \Omega^*_X/T(\Omega^*_X)) \cong H^s(X, \mathcal{I}_{\Sigma_X} \omega_X)$. Since $\dim(\Sigma(X)) \leq s - 2$, a standard exact sequence gives $H^s(X, \mathcal{I}_{\Sigma_X} \omega_X) \cong H^s(\omega_X)$. Duality gives that the latter vector space has dimension at most 1. Hence $h^s(X, L|X) \leq 1$. Thus $h^0(X, \omega_X \otimes (L|X)^*) \leq 1$ (duality). Since X is a Cartier divisor of W, we have $\omega_X \cong \omega_W \otimes (M \otimes H^{\otimes x}|X)$. Look at the exact sequence of coherent sheaves on W:

$$0 \to L^* \otimes \omega_W \to L^* \to L^* \otimes \omega_W \otimes M \otimes H^{\otimes x} \to \omega_X \otimes (L^*|X) \to 0 \quad (1)$$
The integer $h^0(W, L \otimes \omega_W)$ does not depend from x. For $x \gg 0$ the integer $h^0(W, L^* \otimes \omega_W \otimes M \otimes H^{\otimes x})$ is arbitrarily large, because H is ample. Thus for $x \gg 0$ we get $h^0(X, \omega_X \otimes (L|X)^*) \geq 2$, contradiction.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

