Pfaff fields and sectional genus

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Here we give an extension of two results of M. Corrêa and M. Jardin on Pfaff fields on projective schemes.

AMS Subject Classification: 37F75, 14J60, 58A17
Key Words: Pfaff field, sectional genus

1. Introduction

Esteves and Kleiman introduced the general set-up of Pfaff systems and Pfaff fields with the right amount of generality (see [4]). Let Y be an equidimensional reduced projective variety defined over an algebraically closed field \mathbb{K}. Set $m := \dim(Y)$. Fix an integer $s \in \{1, \ldots, m\}$. A rank s Pfaff field on Y is a map $\Omega^s_Y \to L$, where $L \in \text{Pic}(Y)$. For any ample line H, the H-sectional genus $g(X, H)$ of H is the unique integer such that $2g(X, H) - 2 = (\omega_X + (m - 1)H) \cdot H^{m-1}$.

We first consider an extension of [2], Theorem 2.

Theorem 1. Assume the existence of a rank m Pfaff field $\eta : \Omega^m_Y \to L$ not vanishing identically on any irreducible component of Y. Let $\mathcal{O}_Y(1)$ be any ample line bundle on Y. Let $T \subset Y$ denote the sum of all codimension 1 components of the singular set of η and of the singular scheme Σ_Y if Y with the multiplicities coming from the scheme-structure described in [3], Subsection 4.1. Then $2g(Y, \mathcal{O}_Y(1)) \leq L \cdot \mathcal{O}_Y(1)^{m-1} + T \cdot \mathcal{O}_Y(1)^{m-1}$ (intersection numbers).

Received: February 20, 2011 c⃝ 2011 Academic Publications, Ltd.
If $Y \subset \mathbb{P}^n$ and η comes from a rank m Pfaff field η_1 of \mathbb{P}^n (i.e. Y is a solution of $\eta_1 = 0$ not contained in the singular locus of η_1) then η is singular on a codimension 1 subvariety of Y (see [4], Proposition 3.4, for much more). Hence $T \neq \emptyset$ in this case. Notice that if Y is smooth, then the obvious isomorphism $\Omega^m_Y \to \omega_Y$ is a rank m Pfaff field with $T = \emptyset$.

From now on in the introduction we assume $\text{char}(\mathbb{K}) = 0$. For any $R \in \text{Pic}(X)$ let $q(R, H)$ denote the infimum of all rational numbers u such that there is an injective map $R \hookrightarrow M$ with $M \in \text{Pic}(X)$ and M numerically equivalent to the \mathbb{Q}-divisor uH. Obviously $q(R, H) \in \mathbb{R}$. We use the integer $q(R, H)$ to extend [2], Theorem 1, to the case of Pfaff fields not associated to multiples of H, i.e. we prove the following result.

Theorem 2. Let X be a smooth and connected m-dimensional projective variety whose tangent bundle Θ_X is μ-semistable with respect to at least one polarization H. Fix an integer k such that $1 \leq k \leq m$ and assume the existence of a k-Pfaff field, i.e. the existence of a non-zero map $\Omega^k_X \to R$ with $R \in \text{Pic}(X)$. Then $mR \cdot H^{m-1} \geq -k \cdot \omega_X \cdot H^{m-1}$ and $mq(R, H)H^n \geq -k \cdot \omega_X \cdot H^{m-1}$.

Since $2g(X, H) - 2 = (\omega_X + (m - 1)H) \cdot H^{m-1}$, may use the equality $\omega_X \cdot H^{m-1} = 2g(X, H) - 2 - (m - 1)H^m$ to rephrase the second inequality of Theorem 2 in terms of the sectional genus $g(X, H)$.

For several examples of smooth and connected m-dimensional projective variety with stable tangent bundle, see several papers quoted in [2]. For varieties with semistable tangent bundles we may add the Abelian varieties and varieties with an Abelian variety as an étale covering.

Theorems 1 and 2 are about the sectional genus. However, if $m \geq 2$, then they should imply bounds on the intermediate cohomology $\bigoplus_{t \in \mathbb{Z}} H^i(Y, \mathcal{O}_Y(t))$ and $\bigoplus_{t \in \mathbb{Z}} H^i(Y, L \otimes \mathcal{O}_Y(t))$, $1 \leq i \leq m - 1$ (see Proposition 1 for the smooth case).

2. The Proofs

Lemma 1. Let F be a rank k torsion free sheaf on X. Fix a rank k vector bundle E on X and an ample line bundle H on X. Then there is an integer x such that for all integers $t \geq x$ there is an inclusion $F \hookrightarrow E \otimes H^\otimes t$. We call $k(F, E, H)$ the integer x just introduced.

Proof. Let y be the minimal integer x such that for all integers $t \geq x$ the vector bundle $E \otimes H^\otimes t$ is spanned (it exists by the definition of ample line bundle). Fix any integer $t \geq y$. For a general k-dimensional vector space
V \subset H^0(X, E \otimes H^{\otimes t})$ the evaluation map $V \otimes O_X \to E \otimes H^{\otimes t}$. Thus we may take $y = k(O_X^{\otimes k}, E, H)$ (here we have = and not just \geq by the minimality assumption of y).

Since F is torsion free, the natural map $j_F : F \to F^{\vee \vee}$ is injective and for any vector bundle G any injective map $F \to G$ factors through j_F. Thus $k(F, E, H)$ exists if and only if $k(F^{\vee \vee}, E, H)$ exists. Moreover, if any of them exists, then they are equal. Hence it is sufficient to prove the existence of the integer $k(F^{\vee \vee}, E, H)$. Let w be the minimal integer such that $F^{\vee \vee} \otimes O_X$ is ample. Fix an integer i such that $1 \leq i \leq m - 1$. Then $H^i(Y, O_Y(t)) = 0$ if $mR \cdot H^{m-1} \geq -k \cdot \omega_X \cdot H^{m-1}/m$. Hence the non-zero maps $\Omega^{\otimes k}_X \to M$ and $\Omega^{\otimes k}_X \to M$ give $mR \cdot H^{m-1} \geq -k \cdot \omega_X \cdot H^{m-1}$ and $(m_m - 1) qH^m \geq -\omega_X \cdot H^{m-1}$. Taking $0 < \eta \ll 1$ we conclude.

Proof of Theorem 1. For any coherent sheaf \mathcal{F} on Y let $T(\mathcal{F})$ denote its torsion subsheaf. There is an injective map $j_Y : \Omega^m_Y/T(\Omega^m_Y) \to I_{\Sigma_Y} \omega_Y$ (see [3], Subsection 3.1). Since L is locally free, the map $\eta : \Omega^m_Y \to L$ induces a non-zero map $\eta' : \Omega^m_Y/T(\Omega^m_Y) \to L$. Set $\eta'' := \eta' \circ j : I_{\Sigma_Y} \omega_Y \to L$. Notice that η'' is an isomorphism on the Zariski open dense subset of Y. Take the intersection $m - 1$ times with $O_Y(1)$ and use the definition of T.

Kodaira’s vanishing gives the following result.

Proposition 1. Assume $\text{char}(K) = 0$ and Y smooth. Let x be the minimal integer such that $\omega_Y \otimes O_Y(x)$ is ample, y the minimal integer such that $L \otimes O_Y(y)$ is ample and z the minimal integer such that $O_Y(z) \otimes L^*$ is ample. Fix an integer i such that $1 \leq i \leq m - 1$. Then $H^i(Y, O_Y(t)) = 0$ if
either $t \geq x + 1$ or $t < 0$ and $H^i(Y, L \otimes O_Y(t)) = 0$ if either $t \geq x + y$ or $t \leq -z$.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

