GALERKIN-FINITE ELEMENT METHOD FOR
THE NUMERICAL SOLUTION OF
ADVECTION-DIFFUSION EQUATION

Dinkar Sharma1, Ram Jiwari2§, Sheo Kumar3
1,2,3Department of Mathematics
Dr. B.R. Ambedkar National Institute of Technology
Jalandhar, Punjab, 144011, INDIA

Abstract: In this article, Galerkin-finite element method is proposed to
find the numerical solutions of advection-diffusion equation. The equation is
generally used to describe mass, heat, energy, velocity, vorticity etc. As test
problem, three different solutions of advection-diffusion equation are chosen.
Maximum errors norm L_{∞} are calculated and found that the errors are small
and negligible.

AMS Subject Classification: 65Mxx, 65Nxx
Key Words: finite element method, finite difference method, advection-
diffusion equation

1. Introduction

Consider the one-dimensional advection-diffusion equation

$$\frac{\partial U}{\partial t} - \lambda \frac{\partial^2 U}{\partial x^2} + \alpha \frac{\partial U}{\partial x}, \quad 0 \leq x \leq L, \ t > 0,$$

(1)

with the initial condition

$$U(x, 0) = \phi(x), \quad 0 \leq x \leq L,$$

(2)

and the boundary conditions

Received: March 15, 2011 © 2011 Academic Publications, Ltd.
§Correspondence author
\[U(0, t) = f(t), \quad U(L, t) = h(t), \quad t > 0, \quad (3) \]

where \(U \) represents concentration of the pollutant at point \(x \), the advection coefficient \(\alpha \) is the velocity of water flow and \(\lambda \) is the diffusion coefficient.

The advection-diffusion equation is generally used to describe mass, heat, energy, velocity, and vorticity [13]. The equation has been used as a model equation in many chemistry and engineering problems such as, thermal pollution in river systems [3], flow in porous media [9], dispersion of tracers in porous media [4], the dispersion of dissolved material in estuaries and coastal seas [6], the intrusion of salt water into fresh water aquifers, the spread of pollutants in rivers and streams [2], forced cooling by fluids of solid material such as windings in turbo generators [5], the spread of solute in a liquid flowing through a tube, long-range transport of pollutants in the atmosphere [17], contaminant dispersion in shallow lakes [15], model water transport in soils [14], the absorption of chemicals into beds [7], etc. Isenberg and Gutfinger used the advection-diffusion equation to describe heat transfer in a draining film [7]. Mortan has used the advection-diffusion equation to model some economics and financial forecasting [10]. Besides this, the equation has great importance in civil engineers and hydrologists. Thus, the advection-diffusion equation is very interesting linear partial differential equation from numerical study point of view.

2. Semidiscrete Finite Element Models

The semi discrete formulation involves approximation of the spatial variation of the dependent variable. The first step involves the construction of the weak form of the given problem over a typical element. In second step, we develop the finite element model by seeking approximation of the solution.
2.1. Weak Formulation of the Problem

The weak formulation of the given problem (1) over a typical linear element (x_a, x_b) is given by

$$\int_{x_a}^{x_b} w(x) \left\{ \frac{\partial U}{\partial t} - \lambda \frac{\partial^2 U}{\partial x^2} + \alpha \frac{\partial U}{\partial x} \right\} \, dx = 0, \quad (4)$$

where $w(x)$ are arbitrary test functions and may be viewed as the variation in $U(x)$. After reducing the order of integration, we arrive at the following system of equations

$$\int_{x_a}^{x_b} w(x) \left\{ \frac{\partial U}{\partial t} + \lambda \frac{\partial w}{\partial x} \frac{\partial U}{\partial x} + \alpha w(x) \frac{\partial U}{\partial x} \right\} \, dx = 0. \quad (5)$$

2.2. Finite Element Formulation of the Problem

The finite-element model may be obtained from equations (5) by substituting finite element approximations in the decoupled form

$$U(x, t) = \sum_{j=1}^{N} U_j(t_s) \psi_j(x), \quad s = 1, 2, \ldots. \quad (6)$$

Substituting $w = \psi_i(x)$ and (6) in equation (5) to obtain the ith equation of the system, we have

$$\int_{x_a}^{x_b} \psi_i \left(\sum_{j=1}^{N} \frac{U_j}{dt} \psi_j \right) + \alpha \psi_i \left(\sum_{j=1}^{N} \frac{d\psi_j}{dx} \right) + \lambda \frac{d\psi_i}{dx} \left(\sum_{j=1}^{N} \frac{d\psi_j}{dx} \right) \, dx$$

$$= 0, \quad (7)$$

$$\sum_{j=1}^{N} \left[\left(\int_{x_a}^{x_b} \psi_i \psi_j \, dx \right) \frac{dU_j}{dt} + \alpha \left(\int_{x_a}^{x_b} \psi_i \frac{d\psi_j}{dx} \, dx \right) U_j + \lambda \left(\int_{x_a}^{x_b} \frac{d\psi_i}{dx} \frac{d\psi_j}{dx} \, dx \right) U_j \right]$$

$$= 0 \quad (8)$$

The equation (8) can be written in the matrix form

$$[M] \{ \dot{U} \} + [K^1] \{ U \} + [K^2] \{ U \} = 0, \quad (9)$$
where \(M_{ij} = \int_{x_a}^{x_b} \psi_i \psi_j dx \), \(K_{ij}^1 = \int_{x_a}^{x_b} \psi_i \frac{d\psi_j}{dx} dx \),
\[
K_{ij}^2 = \int_{x_a}^{x_b} \frac{d\psi_i}{dx} \frac{d\psi_j}{dx} dx.
\]

(10)

The system (9) can be written as

\[
[M] \{\dot{U}\} + [K] \{U\} = 0,
\]

(11)

where \([K] = [K^1] + [K^2]\).

We use the linear piecewise approximation in the space variable and the Galerkin method to obtain the semi discrete approximation to equation (1)

\[
U^e(x,t) = \psi_{i-1}(x) U_{i-1}(t) + \psi_i(x) U_i(t),
\]

(12)

where

\[
\psi_{i-1}(x) = \frac{x - x_{i-1}}{x_i - x_{i-1}}, \quad \psi_i(x) = \frac{x_i - x}{x_i - x_{i-1}}.
\]

(13)

We have used the linear piecewise approximation (12) and (13) to find out the integral in the equation (10). Then, the system (11) become

\[
[M] \{\dot{U}\} + [K] \{U\} = 0,
\]

(14)

where:

\[
[M] = \frac{h}{6} [\frac{2}{1} \frac{1}{2}], \quad [K] = \frac{\alpha}{2} [\frac{1}{1} \frac{1}{1}] + \frac{\lambda}{h} [\frac{1}{1} \frac{1}{1}],
\]

\[
\{\dot{U}\} = \begin{bmatrix} U_{i-1} \\ \dot{U}_i \end{bmatrix}, \quad \{U\} = \begin{bmatrix} U_{i-1} \\ U_i \end{bmatrix}.
\]

3. Fully Discretized Finite Element Equations

We have the system of ordinary differential equations as follows

\[
[M] \{\dot{U}\} + [K] \{U\} = 0,
\]

(15)

subject to the initial condition

\[
\{U\}_0 = \phi(x) = \{U\}_0,
\]

(16)

where \(\{U\}_0\) denotes the vector of nodal values of \(U\) at time \(t = 0\) whereas \(\{U\}_0\) denotes the column of nodal values \(U_{j0}\).
As applied to a vector of time derivatives of the nodal values the weighted average of approximation on the equation (15), we have

\[[M]\left(\frac{\{U\}_{s+1} - \{U\}_s}{\Delta t}\right) + \theta[K]\{U\}_{s+1} + (1 - \theta)[K]\{U\}_s = 0. \tag{17} \]

The equation (17) can be written in simple form as

\[([M] + \Delta t\theta[K])\{U\}_{s+1} = [M]\{U\}_s - \Delta t (1 - \theta) [K]\{U\}_s. \tag{18} \]

The algebraic system (18) is solved by Gauss elimination method by taking Crank-Nicolson Scheme i.e \(\theta = \frac{1}{2} \) in equation (18).

4. Numerical Experiment and Discussion

In this section, we have studied three test examples to check the accuracy of the proposed numerical scheme.

Example 1. In the first test example, the advection-diffusion equation (1) is considered with domain \([0, 9]\) and the analytical solution

\[U(x, t) = 10 \exp\left(\frac{- (x - x_0 - \alpha t)^2}{2 \rho^2}\right). \tag{19} \]
Table 1: Comparison of numerical and analytic solutions of Example 1 for $\alpha = 0.5, \lambda = 0.1$ with maximum absolute error

<table>
<thead>
<tr>
<th>T</th>
<th>x</th>
<th>Num Sol</th>
<th>Exact Sol</th>
<th>Max Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>9.99991</td>
<td>9.99993</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>9.99970</td>
<td>9.99971</td>
<td>1.43479</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>9.99819</td>
<td>9.99821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>9.99968</td>
<td>9.99971</td>
<td>4.30570</td>
</tr>
<tr>
<td>4.5</td>
<td>9.99989</td>
<td>9.99993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>9.99881</td>
<td>9.99885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1.5</td>
<td>9.99930</td>
<td>9.99935</td>
<td>4.45166</td>
</tr>
<tr>
<td>4.5</td>
<td>9.99993</td>
<td>10.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>9.99928</td>
<td>9.99935</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The initial and boundary conditions are taken from the analytical solution (19). We have considered $\rho = 264m$, $\alpha = 0.5m/s$ and $x_0 = 2$. In this example, we have considered two cases. In the first case, we study the purely advection equation by taking $\lambda = 0.1$. In second case, we take advection-diffusion equation. Figure 1 depicts the absolute errors at different time for first case. Table 1 shows the comparison of numerical and analytic solutions at different time and x with maximum absolute error for the second case. Figure 2 shows the absolute errors for the second case. The Table 1 and Figures 1-2 show that the proposed method has good accuracy.

Example 2. In the second test, the analytical solution of equation (1) is given by

$$U(x, t) = 100 \left(\frac{e^{\frac{Pr}{L}} - 1}{e^P - 1} + \frac{4\pi e^{\frac{Pr}{L}} \sinh(P/2)}{e^P - 1} \sum_{m=1}^{\infty} A_m + 2\pi e^{\frac{Pr}{L}} \sum_{m=1}^{\infty} B_m \right), \quad (20)$$

where:

$$A_m = (-1)^m \frac{m}{\beta_m} \sin \left(\frac{m\pi x}{L} \right) e^{-\lambda_m t},$$

$$B_m = \left[(-1)^m \frac{m}{\beta_m} \left(1 + \frac{P}{\beta_m} \right) e^{\frac{Pr}{L}} + \frac{mP}{\beta_m} \right] \sin \left(\frac{m\pi x}{L} \right) e^{-\lambda_m t},$$

with

$$\beta_m = \frac{P^2}{4} + (m\pi)^2 \quad \text{and} \quad \lambda_m = \frac{\alpha^2}{4\lambda} + \frac{m^2\pi^2\lambda}{L^2},$$
GALERKIN-FINITE ELEMENT METHOD FOR THE NUMERICAL... 395

Figure 3: Numerical solution of Example 2 for $\alpha = 0.1$, $\lambda = 0.01$ at different time

Figure 4: Numerical solution of Example 3 for $\alpha = 1.0$, $\lambda = 0.01$ at different time

<table>
<thead>
<tr>
<th>T</th>
<th>x</th>
<th>Num Sol</th>
<th>Exact Sol</th>
<th>Max Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>0.25</td>
<td>6.19441</td>
<td>6.19505</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>22.34930</td>
<td>22.3500</td>
<td>6.4125</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>46.15160</td>
<td>46.15206</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.25</td>
<td>2.72582</td>
<td>2.72601</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>11.69460</td>
<td>11.69100</td>
<td>3.6142</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>30.63180</td>
<td>30.63030</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>0.25</td>
<td>0.46021</td>
<td>0.46009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>2.60798</td>
<td>2.60830</td>
<td>3.2890</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>12.78790</td>
<td>12.7904</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Comparison of numerical and analytic solutions of Example 1 for $\alpha = 0.1$, $\lambda = 0.01$ with maximum absolute error

where $P = \frac{\alpha L}{\lambda}$ is the Peclet number.

In the numerical experiment, we have considered the initial and boundary conditions $U(x,0) = \frac{100x}{L}$ and $U(0,t) = 0$, $U(L,t) = 100$ with $L = 1.0$ m, $\alpha = 0.1$ m/s, $\lambda = 0.01$ m2/s.

In Table 2, a comparison is made between the analytical solutions and the numerical solution with maximum absolute error. The Figure 3 shows the behavior of the numerical solutions at different time and from figure it is clear
Figure 5: Numerical solution of Example 3 for $\alpha = 1.0$, $\lambda = 0.01$ at different time

Figure 6: Numerical solution of Example 3 for $\alpha = 1.0$, $\lambda = 0.01$ at different time

Figure 7: Numerical solution of Example 3 for $\alpha = 1.0$, $\lambda = 0.01$ at different time

that as the time increase the profile behavior of the wave decreases.

Example 3. The analytical solution of the equation (1) in the region
bounded by $0 \leq x \leq 1$ is given by

$$U(x,t) = \frac{0.025}{\sqrt{0.000625 + 0.02t}} \exp \left(\frac{-(x - 0.5 - t)^2}{(0.00125 + 0.04t)} \right).$$ \hspace{1cm} (21)

The initial and boundary conditions are taken from the analytical solution. The values of advection and diffusion coefficients are chosen by $\alpha = 1.0, \lambda = 0.01$. The Figures 4-7 show the behavior of numerical solutions at different times.

5. Conclusion

In this article, Galerkin-finite element method is proposed to find the numerical solutions of advection-diffusion equation. In the solution procedure, the first step is to make weak formulation and then develop finite element formulation. Lastly, weighted average is used for fully discretization. As test problem, three different solutions of advection-diffusion equation are chosen. Maximum errors norm L_∞ are calculated and found that the errors are small. Also, a comparison of numerical and analytical solutions is made and found that the proposed scheme has good accuracy.

6. Acknowledgment

One of the authors Dinkar Sharma thankfully acknowledges the financial assistance provided by MHRD India.

References

