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Abstract: We find the greatest value α and the least value β such that the
double inequality

αT (a, b) + (1 − α)H(a, b) < P (a, b) < βT (a, b) + (1 − β)H(a, b)

holds for all a, b > 0 with a 6= b. Here T (a, b), H(a, b) and P (a, b) denote the
Centroidal, harmonic, and the Seiffert means of two positive numbers a and b,
respectively.

AMS Subject Classification: 26D15
Key Words: optimal convex combination bound, Centroidal mean, harmonic
mean, the Seiffert mean

1. Introduction

For a, b > 0 with a 6= b the Seiffert means P (a, b) was introduced by Seiffert
[1,2] as follows:

P (a, b) =
a − b

4 arctan(
√

a/b) − π
. (1.1)

Recently, the inequalities for means have been the subject of intensive research
[3-20]. In particular, many remarkable inequalities for the Seiffert mean can be
found in the literature [4,15-20].

Let T (a, b) = 2(a2 + ab + b2)/3(a + b),H(a, b) = 2ab/(a + b), A(a, b) =
(a+b)/2, G(a, b) =

√
ab, I(a, b) = 1/e(bb/aa)1/(b−a) and L(a, b) = (b−a)/(logb−

loga) be the centroidal, harmonic, arithmetic, geometric, identric and logarith-
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mic means of two positive real numbers a and b with a 6= b. Then

min{a, b} < H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b)

< T (a, b) < max{a, b}. (1.2)

In [1], Seiffert proved

L(a, b) < P (a, b) < I(a, b)

for all a, b > 0 with a 6= b.

The following bounds for the Seiffert mean P (a, b) in terms of the power
mean Mr(a, b) = ((ar + br)/2)1/r(r 6= 0) were presented by Jagers in [18]:

M1/2 < P (a, b) < M2/3(a, b) (1.3)

for all a, b > 0 with a 6= b.

Hästö [20] found the sharp lower bound for the Seiffert mean as follow:

Mlog2/logπ(a, b) < P (a, b) (1.4)

for all a, b > 0 with a 6= b.

In [3], Seiffert proved

P (a, b) >
3A(a, b)G(a, b)

A(a, b) + 2G(a, b)
and P (a, b) >

2

π
A(a, b) (1.5)

for all a, b > 0 with a 6= b.

In [4], the authors found the greatest value α and the least value β such
that the double inequality αA(a, b)+(1−α)H(a, b) < P (a, b) < βA(a, b)+(1−
β)H(a, b) holds for all a, b > 0 with a 6= b.

The purpose of the present paper is to find the greatest value α and the
least value β such that the double inequality

αT (a, b) + (1 − α)H(a, b) < P (a, b) < βT (a, b) + (1 − β)H(a, b)

holds for all a, b > 0 with a 6= b.
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2. Main Results

Theorem 2.1. The double inequality

αT (a, b) + (1 − α)H(a, b) < P (a, b) < βT (a, b) + (1 − β)H(a, b)

holds for all a, b > 0 with a 6= b if and only if α 6
3
2π and β >

5
8 .

Proof. Firstly, we prove that

P (a, b) <
5

8
T (a, b) +

3

8
H(a, b), (2.1)

P (a, b) >
3

2π
T (a, b) +

(

1 − 3

2π

)

H(a, b), (2.2)

for all a, b > 0 with a 6= b.
Without loss of generality, we assume a > b. Let t =

√

a/b > 1 and
p ∈ {5

8 , 3
2π}. Then (1.1) leads to

1

b
[pT (a, b) + (1 − p)H(a, b) − P (a, b)]

= pT (t2, 1) + (1 − p)H(t2, 1) − P (t2, 1)

=
2p(t4 + t2 + 1) + 6(1 − p)t2

3(t2 + 1)(4 arctan t − π)
f(t),

(2.3)

where

f(t) = 4 arctan t − π − 3(t4 − 1)

2p(t4 + t2 + 1) + 6(1 − p)t2
. (2.4)

Simple computations lead to

lim
t→1+

f(t) = 0, (2.5)

lim
t→+∞

f(t) = π − 3

2p
, (2.6)

f ′(t) =
g1(t)

(1 + t2)[2p(t4 + t2 + 1) + 6(1 − p)t2]2
(2.7)

where

g1(t) = 16p2t8 − (36 − 24p)t7 + 32p(3 − 2p)t6 − (36 + 24p)t5

+48(3 + 2p2 − 4p)t4 − (36 + 24p)t3

+32p(3 − 2p)t2 − (36 − 24p)t + 16p2.

(2.8)
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Now we divide the proof into two cases:

Case 1. If p = 5
8 . (2.8) leads to

g1(t) =
(t − 1)4

4
(25t4 + 16t3 + 54t2 + 16t + 25) > 0 (2.9)

for t > 1. (2.9) and (2.7) imply f ′(t) > 0, thus f(t) is strictly increasing for
t > 1. Then inequality (2.1) follows from (2.3)-(2.5).

Case 2. If p = 3
2π , Then from (2.8) we get

lim
t→1+

g1(t) = 0, (2.10)

lim
t→+∞

g1(t) = +∞. (2.11)

g′1(t) = 128p2t7 − 84(3 − 2p)t6 + 192p(3 − 2p)t5 − 60(3 + 2p)t4

+ 192(3 + 2p2 − 4p)t3 − 36(3 + 2p)t2 + 64p(3 − 2p)t − (36 − 24p), (3.12)

lim
t→1+

g′1(t) = 0, (2.13)

lim
t→+∞

g′1(t) = +∞. (2.14)

g′′1 (t) = 896p2t6 − 504(3 − 2p)t5 + 960p(3 − 2p)t4 − 240(3 + 2p)t3

+576(3 + 2p2 − 4p)t2 − 72(3 + 2p)t + 64p(3 − 2p),
(2.15)

lim
t→1+

g′′1 (t) = 1152p − 720 =
1152 × 3

2π
− 720 < 0, (2.16)

lim
t→+∞

g′′1 (t) = +∞. (2.17)

g′′′1 (t)|p= 3

2π

= 216[ 56
π2 t5 − 35(1 − 1

π )t4 + 80
π (1 − 1

π )t3 − 10(1 + 1
π )t2

+16(1 +
3

2π2
− 2

π
)t − (1 +

1

π
)],

(2.18)

Let

g2(t) = 56
π2 t5 − 35(1 − 1

π )t4 + 80
π (1 − 1

π )t3 − 10(1 + 1
π )t2

+16(1 +
3

2π2
− 2

π
)t − (1 +

1

π
).

(2.19)

Then

lim
t→1+

g2(t) =
72

π
− 30 < 0, (2.20)
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lim
t→+∞

g2(t) = +∞. (2.21)

g′2(t) = 280
π2 t4 − 140(1 − 1

π )t3 + 240
π (1 − 1

π )t2 − 20(1 + 1
π )t

+16(1 +
3

2π2
− 2

π
),

(2.22)

lim
t→1+

g′2(t) =
64

π2
+

328

π
− 144 < 0, (2.23)

lim
t→+∞

g′2(t) = +∞. (2.24)

g′′2 (t) = 20[ 56
π2 t3 − 21(1 − 1

π )t2 + 24
π (1 − 1

π )t − (1 + 1
π )] = 20g3(t), (2.25)

where

g3(t) =
56

π2
t3 − 21(1 − 1

π
)t2 +

24

π
(1 − 1

π
)t − (1 +

1

π
). (2.26)

So,

lim
t→1+

g3(t) =
32

π2
+

44

π
− 22 < 0, (2.27)

lim
t→+∞

g3(t) = +∞. (2.28)

g′3(t) = 6[
28

π2
t2 − 7(1 − 1

π
)t +

4

π
(1 − 1

π
)] = 6g4(t), (2.29)

where

g4(t) =
28

π2
t2 − 7(1 − 1

π
)t +

4

π
(1 − 1

π
). (2.30)

By simple computation, we have

lim
t→1+

g4(t) =
24

π2
+

11

π
− 7 < 0, (2.31)

lim
t→+∞

g4(t) = +∞. (2.32)

g′4(t) =
56

π2
t − 7(1 − 1

π
), (2.33)

lim
t→1+

g′4(t) =
56

π2
− 7(1 − 1

π
) > 0, (2.34)

g′′4 (t) =
56

π2
> 0, (2.35)

From (2.35) and (2.34) we clearly see that g′4(t) > 0 for t > 1, hence g4(t) is
strictly increasing in [1,+∞). It follows from (2.31)and (2.32) together with the
monotonicity of g4(t) that there exists λ1 > 1 such that g4(t) < 0 for t ∈ [1, λ1)
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and g4(t) > 0 for t ∈ (λ1,+∞), hence from (2.29) g3(t) is strictly decreasing in
[1, λ1] and strictly increasing in [λ1,+∞).

From (2.27) and (2.28) together with the monotonicity of g3(t) we know
that there exists λ2 > 1 such that g3(t) < 0 for t ∈ [1, λ2) and g3(t) > 0 for
t ∈ (λ2,+∞), hence from (2.25) g′2(t) is strictly decreasing in [1, λ2] and strictly
increasing in [λ2,+∞).

From (2.23) and (2.24) together with the monotonicity of g′2(t) we clearly
see that there exists λ3 > 1 such that g2(t) is strictly decreasing in [1, λ3] and
strictly increasing in [λ3,+∞). It follows from (2.18) (2.20) and (2.21) together
with the monotonicity of g2(t) that there exists λ4 > 1 such that g′′1 (t) is strictly
decreasing in [1, λ4] and strictly increasing in [λ4,+∞).

From (2.16) and (2.17) together with the monotonicity of g′′1 (t) we can
see that there exists λ5 > 1 such that g′1(t) is strictly decreasing in [1, λ5]
and strictly increasing in [λ5,+∞). From (2.13) and (2.14) together with the
monotonicity of g′1(t) we clearly see there exists λ6 > 1 such that g1(t) is strictly
decreasing in [1, λ6] and strictly increasing in [λ6,+∞). Then (2.7) (2.10) and
(2.11) imply that there exists λ7 > 1 such that f(t) is strictly decreasing in
[1, λ7] and strictly increasing in [λ7,+∞).

Note that (2.6) becomes

lim
t→+∞

f(t) = 0, (2.36)

for p = 3
2π .

It follows from (2.5) and (2.36) together with the monotonicity of f(t) that

f(t) < 0, (2.37)

for t > 1.
Therefore, inequality (2.2) follows from (2.3) and (2.4) together with (2.37).
Secondly, we prove that 5

8T (a, b)+ 3
8H(a, b) is the best possible upper convex

combination bound of centroidal and harmonic means for the Seiffert mean
P(a,b).

For any t > 1 and β ∈ R, we have

βT (t2, 1) + (1 − β)H(t2, 1) − P (t2, 1) = 2
3β t4+t2+1

t2+1
+ (1 − β) 2t2

t2+1
− t2−1

4 arctan t−π

=
h(t)

3(t2 + 1)(4 arctan t − π)
,

(2.38)
where

h(t) = [2β(t4 + t2 + 1) + 6(1 − β)t2](4 arctan t − π) − 3(t4 − 1). (2.39)
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It follows from (2.39) that

h(1) = h′(1) = h′′(1) = 0, (2.40)

h′′′(1) = 12(8β − 5). (2.41)

If β < 5
8 , then (2.41) leads to

h′′′(1) < 0. (2.42)

From (2.42) and the continuity of h′′′(t) we see that there exists δ = δ(β) > 0
such that

h′′′(t) < 0 (2.43)

for t ∈ [1, 1 + δ). Then (2.40) and (2.43) imply that

h(t) < 0 (2.44)

for t ∈ [1, 1 + δ).
Therefore, βT (t2, 1) + (1 − β)H(t2, 1) < P (t2, 1) for t ∈ (1, 1 + δ) follows

from (2.38) and (2.44).
Finally, we prove that 3

2πT (a, b) + (1− 3
2π )H(a, b) is the best possible lower

convex combination bound of centroidal and harmonic means for the Seiffert
mean P(a,b).

In fact, for α > 3
2π , we have

lim
t→+∞

αT (1, x) + (1 − α)H(1, x)

P (1, x)
=

2π

3
α > 1. (2.45)

Inequality (2.45) implies that for any α > 3
2π there exists X = X(α) > 1

such that αT (1, x) + (1 − α)H(1, x) > P (1, x) for x ∈ (X,+∞).
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