Abstract: We construct Eberlein almost periodic functions $f_j : J \rightarrow H$ so that $||f_1(\cdot)||$ is not ergodic and thus not Eberlein almost periodic and $||f_2(\cdot)||$ is Eberlein almost periodic, but f_1 and f_2 are not pseudo almost periodic, the Parseval equation for them fails, where $J = \mathbb{R}_+$ or \mathbb{R} and H is a Hilbert space. This answers several questions posed by Zhang and Liu [18].

AMS Subject Classification: 43A60, 42A16, 42A75, 42A99

Key Words: Eberlein almost periodic, pseudo-almost periodic, Parseval equation

1. Introduction and Notation

Recently Zhang and Liu [18] asked, whether for Hilbert space valued Eberlein almost periodic $f : \mathbb{R} \rightarrow H$ (see §2) a Parseval equation holds (Fourier coefficients for such f are always defined by [14, Theorem 2.4, for \mathbb{R}_+]); this would imply that such f are pseudo almost periodic (see (2.8)). If additionally the range $f(\mathbb{R})$ is relatively norm compact, this is true by results of Goldberg and Irvin [9, Proposition 2.9].

Here we show by examples, that without $f(\mathbb{R})$ relatively compact the f is in general no longer pseudo almost periodic, one has no Parseval equation.
Throughout this paper, $\mathbb{R}^+ = [0, \infty)$, $J \in \{\mathbb{R}^+, \mathbb{R}\}$, X real or complex Banach space; for $f : J \to X$, $f_s(t) := f(s + t)$, $||f|| := ||f(t)||$, $C_b(J, X) = \{f : J \to X : f$ continuous, $||f|| = \sup_{t \in J} ||f(t)|| < \infty\}$, $C_{ub}(J, X) = \{f \in C_b(J, X) : f$ uniformly continuous\}, $AP(\mathbb{R}, X) =$ almost periodic functions [1, p. 3], [16, p. 18-19], $AP(\mathbb{R}^+, X) = AP(\mathbb{R}, X)|_{\mathbb{R}^+}$.

2. Eberlein and Pseudo Almost Periodic Functions

A function $f : J \to X$ is called Eberlein almost periodic if $f \in C_b(J, X)$ and orbit $O(f) := \{f_s : s \in J\}$ is relatively weakly compact in $C_b(J, X)$ (see [8, Definition 10.1, p. 232], [6, Definition 1.4], [12, p. 467], [5, Definition 2.1, p. 138])

$$EAP(J, X) := \{f : f$ Eberlein weakly almost periodic\}, \hspace{1cm} (2.1)$$

$$EAP_0(J, X) := \{f \in EAP(J, X) : 0 \in \text{weak closure of } O(f)\}, \hspace{1cm} (2.2)$$

$$EAP_{rc}(J, X) := \{f \in EAP(J, X) : f(J) \text{ relatively norm compact in } X\}. \hspace{1cm} (2.3)$$

By [2], Theorem 2.3.4 and Theorem 2.4.7, [14] one has

$$EAP(J, X) \subset \mathcal{E}(J, X) \cap C_{ub}(J, X), \hspace{1cm} (2.4)$$

where

$$\mathcal{E}(J, X) := \{f \in L^1_{loc}(J, X) : \text{to } f \text{ exists } x \in X,\}$$

with

$$||\frac{1}{T} \int_s^{s+T} f(t) dt - x|| \to 0 \text{ as } T \to \infty, \text{ uniformly in } s \in J\}, \hspace{1cm} (2.5)$$

then $m_B(f) := x$ is called the Bohr-mean.

For J and X as in Section 1 one has a decomposition theorem [13], p. 18, (in $f = g + h$ the $g \in AP(J, X)$, $h \in EAP_0(J, X)$ are unique)

$$EAP(J, X) = AP(J, X) \oplus EAP_0(J, X). \hspace{1cm} (2.6)$$

The class of pseudo almost periodic functions introduced by Zhang [16], [17], Definition 5.1, p. 57, [3], (1.1) is given by

$$PAP_0(\mathbb{R}, X) := \{f \in C_b(\mathbb{R}, X),$$
\[m_B(|f|) := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(t)| \, dt \text{ exists } = 0 \}, \quad (2.7) \]

similarly for \(\mathbb{R}_+ \), with \(m_B(|f|) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} |f(t)| \, dt \),

\[\text{PAP}(J, X) := \text{AP}(J, X) \oplus \text{PAP}_0(J, X). \quad (2.8) \]

Now by [9], Proposition 2.9, one has

\[f \in \text{EAP}_{rc}(J, X) \text{ implies } |f| \in \text{EAP}(J, \mathbb{C}), \text{ and so } |f|^2 \in \text{EAP}(J, \mathbb{C}), \quad (2.9) \]

by [8], Theorem 12.1, p. 234.

So, if \(X = \text{complex Hilbert space } H \), the polarisation formula ([11, p. 24, (2)]) yields \((f(\cdot), g(\cdot))_H \in \text{EAP}(J, \mathbb{C}) \) if \(f, g \in \text{EAP}_{rc}(J, H) \), (2.4) shows that \((f, g) := m_B(f(\cdot), g(\cdot))_H \) is well defined. With this (semi-definite) scalar product one gets [9, Theorems 5.2 and 5.7] a Parseval equation for \(f \in \text{EAP}_{rc}(J, H) \).

So, (2.6), (2.4) and [9], Corollary 4.19, give

\[\text{EAP}_{rc}(\mathbb{R}, H) = \text{AP}(\mathbb{R}, H) + \{ f \in \text{EAP}_{rc}(\mathbb{R}, H) : (f, f) = 0 \}, \]

with \((f, f) = 0 \) if and only if \(m_B(|f|) = 0 \), \(f \in \text{EAP}_{rc}(\mathbb{R}, H) \). \quad (2.10)

So, with (2.8) one gets for any complex Hilbert space \(H \)

\[\text{EAP}_{rc}(\mathbb{R}, H) \subset \text{PAP}(\mathbb{R}, H). \quad (2.11) \]

Without the “range relatively compact” however all this is no longer true.

3. Examples

For the following we need a converse of Mazur’s theorem (see [15], p. 120, Theorem 2), namely

Proposition 3.1. A sequence \((x_n) \subset X \) weakly converges to \(x \in X \) if and only if, for each subsequence \((x'_n) \) of \((x_n) \), there exists a sequence \((y_n) \) of finite convex combinations of the elements of \((x'_n) \) with \(||y_n - x|| \to 0 \) as \(n \to \infty \).

For a proof see [4], Proposition 1.8, p. 17.

Example 3.2. For \(J = \mathbb{R}_+ \) or \(\mathbb{R} \) and \(H \) infinite dimensional Hilbert space there exists \(f \in \text{EAP}_0(J, H) \) so that \(m_B(|f|) \) and \(m_B(|f|^2) \) do not exist, \(m_B(|f|) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} ||f(t)|| \, dt \) respectively \(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} ||f(t)|| \, dt \) if \(J = \mathbb{R}_+ \) respectively \(\mathbb{R} \). So \(|f| \) and \(|f|^2 = (f(\cdot), f(\cdot))_H \) are not in \(\text{EAP}(J, \mathbb{C}) \).
Theorem. Choose an orthonormal sequence $(e_n)_{n \in \mathbb{N}}$ from H. Define $h : \mathbb{R} \to H$ by $h := 0$ on $(-\infty, \frac{1}{2}, n) \text{ and on } [n, n + \frac{1}{2}]$, with $h(n - \frac{1}{2}) = 0$, $n \in \mathbb{N}$. Then h is well defined and $\in C_{ub}(\mathbb{R}, H)$.

Define further $\phi : \mathbb{R} \to [0, 1]$ for given $I_n = [\alpha_n, \beta_n]$, $\beta_n = \alpha_{n+1} \in \mathbb{N}$, $\alpha_n < \beta_n$, $n \in \mathbb{N}$, $I_1 = [0, 1]$, as follows:

$\phi := 0$ on $(-\infty, 0]$ and all I_n with odd n, $\phi = 1$ on $[\alpha_2n + \frac{1}{10}, \beta_2n - \frac{1}{10}]$ and ϕ linear on $[\alpha_2k, \alpha_2k + \frac{1}{10}]$ and $[\beta_2k - \frac{1}{10}, \beta_2k]$, $k \in \mathbb{N}$. Then also ϕ is well defined and $\in C_{ub}(\mathbb{R}, \mathbb{R})$.

To get a non-ergodic ϕ, choose the I_n recursively with $I_1 = [0, 1]$ as follows (Zorn's Lemma):

If I_1, \ldots, I_{2k} are defined, take $\alpha_{2k+1} := \beta_{2k}$ and β_{2k+1} such that $\frac{\alpha_{2k}}{\beta_{2k+1}} < \frac{1}{5}$;

If I_1, \ldots, I_{2k-1} are defined, take $\alpha_{2k} := \beta_{2k-1}$ and β_{2k} such that

$$\frac{\beta_{2k} - \alpha_{2k} - \frac{1}{5} - 2}{\beta_{2k}} > \frac{3}{4}.$$

Finally, define $f := \phi h | J$, $\in C_{ub}(J, H)$. Then

$$\lim_{T \to \infty} \inf \frac{1}{2T} \int_{-T}^{T} |f(t)| \, dt = \lim_{T \to \infty} \frac{1}{2T} \int_{0}^{T} |f(t)| \, dt \leq$$

$$\lim_{T \to \infty} \inf \frac{1}{2T} \int_{0}^{T} \phi(t) \, dt \leq \lim_{k \to \infty} \frac{1}{\beta_{2k+1}} \int_{0}^{\beta_{2k+1}} \phi(t) \, dt \leq \frac{1}{5},$$

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f|^2(t) \, dt = \lim_{T \to \infty} \frac{1}{2T} \int_{0}^{T} \|\phi(t)h(t)\|^2 \, dt \geq$$

$$\lim_{k \to \infty} \frac{1}{\beta_{2k}} \int_{0}^{\beta_{2k}} |\phi|^2(t) |h|^2(t) \, dt \geq \lim_{k \to \infty} \frac{1}{\beta_{2k}} [\beta_{2k} - \alpha_{2k} - \frac{1}{5} - 2] \geq \frac{3}{4}.$$

Since $|f|^2 \leq |f|$, the above shows that $m_B(|f|)$ and $m_B(|f|^2)$ do not exist, $J = \mathbb{R}$ or \mathbb{R}^+.

$f \in EAP(J, H)$: With the Eberlein-Smulian theorem [7], p. 430, Theorem 1, one has to show: To each sequence (b_n) from J there exists a subsequence (a_m) and $g \in V := C_b(J, H)$ with $f_{b_m} \to g$ weakly in V. Now if (b_n) is bounded, there exists a subsequence (c_k) and $c \in J$ with $c_k \to c$, so $f_{c_k} \to f_c$ uniformly on J and so even in the norm of V, since $f \in C_{ub}(J, H)$.

Now assume $a_m \to \infty$; by taking a further subsequence, one can assume $a_{m+1} - a_m > 1$ and $a_1 \geq 1$, $m \in \mathbb{N}$. To apply Proposition 3.1, let (c_k) be any
subsequence of \((a_m) \) and \(\varepsilon > 0 \), then there exist \(q, k_1, \ldots, k_q \in \mathbb{N} \) with \(\frac{1}{q} < \varepsilon^2 \), \(c_{k_j+1} - c_{k_j} > 1 \) and \(c_{k_1} \geq 1, 1 \leq j \leq q \). Then the \(c_{k_j} \) are in different \([n - \frac{1}{2}, n + \frac{1}{2}]\) intervals for different \(j \), so for any \(t \in \mathbb{R} \), \(f_{c_{k_j}}(t) = f(c_{k_j} + t) = r_j t e_p(j,t) \) with \(0 \leq r_j t \leq 1 \) and \(p(i,t) < p(j,t) \) if \(i < j \) and \(c_{k_j} + t > \frac{1}{2} \). With \(i_0 \) minimal if such \(i \) exist and \(\theta_{k_j} = \frac{1}{q}, 1 \leq j \leq q \), else \(= 0 \), one gets

\[
\left\| \sum_{j=1}^{k_q} \theta_{k_j} f(c_{k_j} + t) \right\|_H^2 = \left\| \sum_{j=1}^{q} \frac{1}{q} f(c_{k_j} + t) \right\|_H^2 =
\]

\[
\left\| \sum_{j=io}^{q} r_{j,t} e_p(j,t) \right\|_H^2 = \frac{1}{q^2} \sum_{j=io}^{q} (r_{j,t})^2 \leq \frac{q}{q^2} = \frac{1}{q};
\]

if no such \(i_0 \) exists, the above sum is even \(0 \leq \frac{1}{q} \).

This holds for any \(t \in \mathbb{R} \), so \(\left\| \sum_{j=1}^{k_q} \theta_{k_j} f_{c_{k_j}} \right\|_V < \varepsilon \). Therefore by Proposition 3.1 indeed \(f_{c_k} \rightarrow 0 \) weakly in \(V, J = \mathbb{R} \) or \(\mathbb{R}_+ \).

The case \(a_m \rightarrow -\infty \) (\(J = \mathbb{R} \)) follows similarly.

\(f \in EAP_0(J, H) \): For \((b_n) = (n) \) the above shows \(0 \in \text{weak closure of orbit } O(f) \).

\(|f| \) and \((f(.),f(.)) \) not Eberlein almost periodic follows with (2.4). \(\square \)

Since for the \(f \) of Example 3.2 the Bohr mean \(m_B(|f|^2) \) does not exist, one has no Parseval equation.

\(EAP(J, X) \subset PAP(J, X) \) is also false, already for \(X = \text{Hilbert space} \):

Assume \(f \in EAP(J, X) \subset PAP(J, X) \). Then \(f = g + h, g \in AP(J, X), h \in PAP_0(J, X) \); now for \(f \in EAP_0(J, X) \) one can show that all Fourier coefficients vanish (for \(J = \mathbb{R}_+ \) see [14, Theorem 2.4]), for \(h \) the same holds , implying \(g = 0 \), then \(f = h \in PAP_0(J, X) \) and so the existence of \(m_B(|f|) \), a contradiction for \(f \) of Example 3.2.

The proof of Example 3.2 works also for \(X = l^p(N, \mathbb{C}), 1 < p \leq \infty \) and \(c_0 \), so \(EAP(J, X) \subset PAP(J, X) \) is also false for these \(X \).

Since for any \(f \in EAP(J, X) \) the range \(f(J) \) is relatively weakly compact, and if \(X = l^1 = l^1(M, \mathbb{C}) \), any \(M \), this implies \(f(J) \) relatively norm compact [10, p. 281 (2)], one has

\[
EAP(J, l^1) = EAP_{rc}(J, l^1) \subset PAP(J, l^1).
\]

Example 3.3. For \(J = \mathbb{R} \) or \(\mathbb{R}_+ \) and \(H \) separable infinite dimensional Hilbert space there exist \(f \in EAP_0(J, H) \) with \(|f|, |f|^2 \in AP(J, \mathbb{R}) \subset EAP(J, \mathbb{R}) \), but \(f(J) \) is not relatively compact, \(m_B(|f|) \) and \(m_B(|f|^2) \) exist and are \(> 0 \).
So a converse of (2.9) is not true, even with $|f|, |f|^2 \in EAP(J, \mathbb{R})$ the Parseval equation can fail, such f need not be pseudo almost periodic.

Proof. Choose an orthonormal sequence $(e_n)_{n \in \mathbb{Z}}$ from H. Define $f : \mathbb{R} \to H$ by $f(n) := e_n$, $n \in \mathbb{Z}$, f linear on $[n - \frac{1}{2}, n]$ and on $[n, n + \frac{1}{2}]$, with $f(n - \frac{1}{2}) = 0$, $n \in \mathbb{Z}$. Then f is well defined and $\in C_{ub}(\mathbb{R}, H)$. One can prove that $f \in EAP_0(\mathbb{R}, H)$ as in the proof of Example 3.2. Obviously, $|f| \in C_{ub}(\mathbb{R}, \mathbb{R})$ has period 1 and so $|f| \in AP(\mathbb{R}, \mathbb{R}) \subset EAP(\mathbb{R}, \mathbb{R})$. $f|_{\mathbb{R}_+}$ has the same properties.

Added in proof: By communication from Kreulich and Ruess, they can construct to each bounded uniformly continuous $g : \mathbb{R} \to [0, \infty)$ an $f \in EAP(\mathbb{R}, H)$ with $|f| = g$ on \mathbb{R}.

References

