IJPAM: Volume 71, No. 2 (2011)
FOR 2-DIMENSIONAL FLOWS



William Paterson University
Wayne, NJ 07470, USA

Stevens Institute of Technology
Hoboken, NJ 07030, USA
Abstract. Computer simulations that track the flow of particles under the
action of a time-dependent velocity field are often used to
visualize the dynamics of phase-space transport. When the velocity
field has two space variables, it is often sufficient to track
the behavior of a curve of initial conditions, rather than a
cloud of particles. Tracking a closed curve of initial
particles can be used to accurately follow the evolution of a closed
region in the phase space. The work presented here investigates methods for performing
particle-tracking simulations that are 1) more rigorous with respect
to accuracy and 2) computationally more efficient in the way in
which the manifold (curve) is represented. A novel
feature is to use the linear variational flow to track the first
derivatives of the manifold, making it possible to construct a
representation for the manifold. We use
a local Hermite interpolation to define a globally
curve.
Error estimates for the interpolating polynomials are used as
criteria to determine where additional nodes are needed (refinement)
and where nodes can be removed (coarsening).
Received: June 20, 2011
AMS Subject Classification: 37M05, 65D99
Key Words and Phrases: curve tracking, flow simulation
Download paper from here.
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2011
Volume: 71
Issue: 2