CONTRA $\alpha\psi$-CONTINUOUS FUNCTIONS

Y.K. Kim1, R. Devi2

1Department of Mathematics
Myongji University
Kyunggi 449-728, SOUTH KOREA
2Department of Mathematics
Kongunadu Arts and Science College
Coimbatore, 641029, Tamil Nadu, INDIA

Abstract: The concept of $\alpha\psi$-closed sets in a topological space are introduced by R. Devi et al (see [2]). In this paper, we introduce the notion of contra $\alpha\psi$-continuous functions utilizing $\alpha\psi$-open sets and study some of the applications of this function.

AMS Subject Classification: 54C08
Key Words: $\alpha\psi$-closed sets, contra $\alpha\psi$-continuous, $\alpha\psi$-normal

1. Introduction

In 1996, Dontchev (see [3]) introduced the notions of contra continuity and strong S-closedness in topological spaces. He defined a function $f : X \to Y$ is contra continuous if the pre image of every open set of Y is closed in X. Also a new class of function called contra semi-continuous function is introduced and investigated by Dontchev and Noiri (see [4]). The notions of contra super continuous, contra pre continuous and contra α-continuous functions are introduced by Jafari and Noiri (see [6, 7]). Nasef (see [9]) has introduced and studied contra γ-continuous function. In this paper, we introduce the concept of contra $\alpha\psi$-continuous functions via the notion of $\alpha\psi$-open set and study some of the applications of this function.

All through this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by $cl(A)$ and $int(A)$ respectively. A is regular open if $A = int(cl(A))$ and A is regular closed if its complement is regular open; equivalently A is regular closed if $A = cl(int(A))$, (see [11]). Let (X, τ) be a space and let A be a subset of X. A is called ψ-closed set (see [2]) if $\psi(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is α-open set of (X, τ). The complement of an ψ-closed set is called ψ-open. We set $\psi\alpha(O)(X, x) = \{ U : x \in U \text{ and } U \in \tau_\psi \}$, where τ_ψ denotes the family of all ψ-open subsets of a space (X, τ). The ψ-closure and ψ-interior, that can be defined in a manner to $cl(A)$ and $int(A)$ respectively, will be denoted by $cl_\psi(A)$ and $int_\psi(A)$ respectively.

2. Contra $\alpha\psi$-Continuous Functions
Theorem 4. For a function \(f : (X, \tau) \to (Y, \sigma) \) the following conditions are equivalent:

(1) \(f \) is contra \(\alpha\psi \)-continuous;

(2) for every closed subset \(F \) of \(Y \), \(f^{-1}(F) \in \alpha\psi O(X) \);

(3) for each \(x \in X \) and each \(F \in C(Y, f(x)) \), there exists \(U \in \alpha\psi O(X, x) \) such that \(f(U) \subseteq F \);

(4) \(f(cl_{\alpha\psi}(A)) \subseteq ker(f(A)) \) for every subset \(A \) of \(X \);

(5) \(cl_{\alpha\psi}(f^{-1}(B)) \subseteq f^{-1}(ker(B)) \) for every subset \(B \) of \(Y \).

Proof. The implications (1) \(\iff \) (2) and (2) \(\implies \) (3) are obvious.

(3) \(\implies \) (2) Let \(F \) be any closed set of \(Y \) and \(x \in f^{-1}(F) \). Then \(f(x) \in F \) and there exists \(U_x \in \alpha\psi O(X, x) \) such that \(f(U_x) \subseteq F \). Therefore, we obtain \(f^{-1}(F) = \cup \{ U_x/x \in f^{-1}(F) \} \) and \(f^{-1}(F) \) is \(\alpha\psi \)-open, since \(\tau_{\alpha\psi} \) is a topological space.

(2) \(\implies \) (4) Let \(A \) be any subset of \(X \). Suppose that \(y \notin ker(f(A)) \). Then by Lemma 3., there exists \(F \in C(Y, f(x)) \) such that \(f(A) \cap F = \emptyset \). Thus, we have \(A \cap f^{-1}(F) = \emptyset \). Therefore, we obtain \(f(cl_{\alpha\psi}(A)) \cap F = \emptyset \) and \(y \notin f(cl_{\alpha\psi}(A)) \). This implies that \(f(cl_{\alpha\psi}(A)) \subseteq ker(f(A)) \).

(4) \(\implies \) (5) Let \(B \) be any subset of \(Y \). By (4) and Lemma 3., we have \(f(cl_{\alpha\psi}(f^{-1}(B))) \subseteq ker(f(f^{-1}(B))) \subseteq ker(B) \) thus \(cl_{\alpha\psi}(f^{-1}(B)) \subseteq f^{-1}(ker(B)) \).

(5) \(\implies \) (1) Let \(V \) be any open set of \(Y \). Then, by Lemma 3., we have \(cl_{\alpha\psi}(f^{-1}(V)) \subseteq f^{-1}(ker(V)) = f^{-1}(V) \) and \(cl_{\alpha\psi}(f^{-1}(V)) = f^{-1}(V) \). This shows that \(f^{-1}(V) \) is \(\alpha\psi \)-closed in \(X \).

Corollary 5. If a function \(f : X \to Y \) is contra \(\alpha\psi \)-continuous and \(Y \) is regular, then \(f \) is continuous.

Remark 6. The converse of Corollary 5 is not true. The following example shows that continuity does not necessarily imply contra \(\alpha\psi \)-continuity even if the range is regular.

Example 7. The identity function on the real line with the usual topology is continuous and hence \(\alpha\psi \)-continuous. The inverse image of \((0,1)\) is not \(\alpha\psi \)-closed and consequently the function is not contra \(\alpha\psi \)-continuous.
Theorem 8. If a function $f : X \to Y$ is contra $\alpha\psi$-continuous and Y is regular, then f is $\alpha\psi$-continuous.

Proof. Let x be an arbitrary point of X and let V be an open set of Y containing $f(x)$; since Y is regular, there exists an open set W in Y containing $f(x)$ such that $cl(W) \subseteq V$. Since f is contra $\alpha\psi$-continuous, so by Theorem 4. (3) there exists $U \in \alpha\psi O(X,x)$ such that $f(U) \subseteq cl(W)$. Then $f(U) \subseteq cl(W) \subseteq V$. Hence, f is $\alpha\psi$-continuous.

Definition 9. A space (X, τ) is said to be $\alpha\psi$-space (resp., locally $\alpha\psi$-indiscrete) if every $\alpha\psi$-open set is open (resp. closed) in X.

For any space (X, τ), we have $\tau \subseteq \tau_{\alpha\psi}$. So the following results follows immediately.

Theorem 10. A function $f : (X, \tau) \to (Y, \sigma)$ is contra $\alpha\psi$-continuous if and only if $f : (X, \tau_{\alpha\psi}) \to (Y, \sigma)$ is contra $\alpha\psi$-continuous.

Theorem 11. If a function $f : X \to Y$ is contra $\alpha\psi$-continuous and X is $\alpha\psi$-space, then f is contra-continuous.

Theorem 12. Let X be locally $\alpha\psi$-indiscrete. If a function $f : X \to Y$ is contra $\alpha\psi$-continuous, then f is continuous.

Definition 13. A function $f : X \to Y$ is called almost $\alpha\psi$-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in \alpha\psi O(X,x)$ such that $f(U) \subseteq int_{\alpha\psi}(cl(V))$.

Definition 14. A function $f : X \to Y$ is said to be pre $\alpha\psi$-open if the image of each $\alpha\psi$-open set is $\alpha\psi$-open.

Theorem 15. If a function $f : X \to Y$ is a pre $\alpha\psi$-open and contra $\alpha\psi$-continuous, then f is almost $\alpha\psi$-continuous.

Proof. Let x be any arbitrary point of X and V be an open set containing $f(x)$. Since f is contra $\alpha\psi$-continuous, then by Theorem 4.(3) there exists $U \in \alpha\psi O(X,x)$ such that $f(U) \subseteq cl(V)$. Since f is pre $\alpha\psi$-open, $f(U)$ is $\alpha\psi$-open in Y. Therefore, $f(U) = int_{\alpha\psi} f(U) \subseteq int_{\alpha\psi}(cl(f(U))) \subseteq int_{\alpha\psi}(cl(V))$. This shows that f is almost $\alpha\psi$-continuous.

Definition 16. A function $f : X \to Y$ is said to be almost weakly $\alpha\psi$-continuous if for each $x \in X$ and each open set V of $f(x)$, there exists $U \in \alpha\psi O(X,x)$ such that $f(U) \subseteq cl(V)$.

Theorem 17. If a function $f : X \to Y$ is contra $\alpha\psi$-continuous, then f is almost weakly $\alpha\psi$-continuous.
Proof. Let V be any open set of Y. Since $\text{cl}(V)$ is closed in Y, by Theorem 4. (3) $f^{-1}(\text{cl}(V))$ is $\alpha\psi$-continuous in X and set $U = f^{-1}(\text{cl}(V))$, we have $f(U) \subseteq \text{cl}(V)$. This shows that f is almost $\alpha\psi$-continuous.

Since the family of all $\alpha\psi$-open subsets of a space (X, τ), denoted by $\tau_{\alpha\psi}$, forms a topology on X finer than τ, then the $\alpha\psi$-frontier of A, where $A \subseteq X$, is denoted by $\text{Fr}_{\alpha\psi}(A) = \text{cl}_{\alpha\psi}(A) \cap \text{cl}_{\alpha\psi}(X - A)$.

Theorem 18. The set of all points of x of X at which $f : X \to Y$ is not contra $\alpha\psi$-continuous is identical with the union of the $\alpha\psi$-frontier of the inverse image of closed sets of Y containing $f(x)$.

Proof. Suppose f is not contra $\alpha\psi$-continuous at $x \in X$. There exists $F \in C(Y, f(x))$ such that $f(U) \cap (Y - F) \neq \phi$ for every $U \in \alpha\psi O(X, x)$ by Theorem 4. This implies that $U \cap f^{-1}(Y - F) \neq \phi$. Therefore, we have $x \in \text{cl}_{\alpha\psi}(f^{-1}(Y - F)) = \text{cl}_{\alpha\psi}(X - f^{-1}(F))$. However, since $x \in f^{-1}(F) \subseteq \text{cl}_{\alpha\psi}(f^{-1}(F))$, thus $x \in \text{cl}_{\alpha\psi}(f^{-1}(F)) \cap \text{cl}_{\alpha\psi}(f^{-1}(Y - F))$. Therefore, we obtain $x \in \text{Fr}_{\alpha\psi}(f^{-1}(F))$. Suppose that $x \in \text{Fr}_{\alpha\psi}(f^{-1}(F))$ for some $F \in C(Y, f(x))$ and f is contra $\alpha\psi$-continuous at x, then there exists $U \in \alpha\psi O(X, x)$ such that $f(U) \subseteq V$. Therefore, we have $x \in U \subseteq f^{-1}(F)$ and hence $x \in \text{int}_{\alpha\psi}(f^{-1}(F)) \subseteq X - \text{Fr}_{\alpha\psi}(f^{-1}(F))$. This is a contradiction. This means that f is not contra $\alpha\psi$-continuous.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by $\text{Gr}(f)$.

Theorem 19. Let $f : X \to Y$ be a function and let $g : X \to X \times Y$ be the graph function of f. If g is contra $\alpha\psi$-continuous, then f is contra $\alpha\psi$-continuous.

Proof. Let U be an open set in Y, then $X \times Y$ is an open set in $X \times Y$. Since g is contra $\alpha\psi$-continuous, it follows that $f^{-1}(U) = g^{-1}(X \times Y)$ is an $\alpha\psi$-closed set in X. Thus, f is contra $\alpha\psi$-continuous.

Definition 20. The graph $\text{Gr}(f)$ of a function $f : X \to Y$ is said to be contra $\alpha\psi$-closed if for each $(x, y) \in (X \times Y) - \text{Gr}(f)$, there exists $U \in \alpha\psi O(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap \text{Gr}(f) = \phi$.

Lemma 21. The graph $\text{Gr}(f)$ of a function $f : X \to Y$ is contra $\alpha\psi$-closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - \text{Gr}(f)$, there exists $U \in \alpha\psi(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 22. If $f : X \to Y$ is contra $\alpha\psi$-continuous and Y is Urysohn, then $Gr(f)$ is contra $\alpha\psi$-closed in the product space $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - Gr(f)$. Then $y \neq f(x)$ and there exists open sets H_1, H_2 such that $f(x) \in H_1$, $y \in H_2$ and $cl(H_1) \cap cl(H_2) = \phi$. From hypothesis, there exists $V \in \alpha\psi O(X, x)$ such that $f(V) \subset cl(H_1)$. Therefore, we obtain $f(V) \cap cl(H_2) = \phi$. This shows that $Gr(f)$ is contra $\alpha\psi$-closed.

Theorem 23. If $f : X \to Y$ is contra $\alpha\psi$-continuous and Y is T_1, then $G(f)$ is contra $\alpha\psi$-closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - Gr(f)$. Then $f(x) \neq y$ and there exists an open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is contra $\alpha\psi$-continuous there exists $U \in \alpha\psi O(X, x)$ such that $f(U) \subset V$. Therefore, we have $f(U) \cap (Y - V) = \phi$ and $Y - V \in C(Y, y)$. This shows that $G(f)$ is contra $\alpha\psi$-continuous in $X \times Y$.

Theorem 24. Let $(X_\lambda : \lambda \in \Lambda)$ be any family of topological spaces. If $f : X \to \prod X_\lambda$ is a contra $\alpha\psi$-continuous function. Then $P_{r\lambda} \circ f : X \to X_\lambda$ is contra $\alpha\psi$-continuous for each $\lambda \in \Lambda$, where $P_{r\lambda}$ is the projection of $\prod X_\lambda$ onto X_λ.

Proof. We shall consider a fixed $\lambda \in \Lambda$. Suppose U_λ is an arbitrary open set in X_λ. Then $P_{r\lambda}^{-1}(U_\lambda)$ is open in $\prod X_\lambda$. Since f is contra $\alpha\psi$-continuous, we have by definition $f^{-1}(P_{r\lambda}^{-1}(U_\lambda)) = (P_{r\lambda} \circ f)^{-1}(U_\lambda)$ is $\alpha\psi$-continuous in X. Therefore $P_{r\lambda} \circ f$ is contra $\alpha\psi$-continuous.

Theorem 25. If $f : X \to Y$ is a contra $\alpha\psi$-continuous function and $g : Y \to Z$ is a continuous function, then $g \circ f : X \to Z$ is contra $\alpha\psi$-continuous if and only if g is contra $\alpha\psi$-continuous.

Proof. Let $g \circ f : X \to Z$ is contra $\alpha\psi$-continuous and let F be a closed subset of Z. Then $(g \circ f)^{-1}(F)$ is a $\alpha\psi$-open of X. That is $f^{-1}(g^{-1}(F))$ is $\alpha\psi$-open subset of Y. So, $g^{-1}(F)$ is a $\alpha\psi$-open in Y. Hence g is contra $\alpha\psi$-continuous.
3. Applications

Definition 26. (a) $\alpha\psi$-normal if each pair of non-empty disjoint closed sets can be separated by disjoint $\alpha\psi$-open sets,

(b) ultranormal (see [10]) if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 27. If $f : X \rightarrow Y$ is a contra $\alpha\psi$-continuous, closed injection and Y is ultranormal, then X is $\alpha\psi$-normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is ultranormal, $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2, respectively. Hence $F_i \subset f^{-1}(V_i)$, $f^{-1}(V_i) \in \alpha\psi O(X)$ for $i = 1, 2$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Thus X is $\alpha\psi$-normal.

Definition 28. A topological space X is said to be $\alpha\psi$-connected if X is not the union of two disjoint non-empty $\alpha\psi$-open subsets of X.

Theorem 29. A contra $\alpha\psi$-continuous image of a $\alpha\psi$-connected space is connected.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is ultranormal, $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2, respectively. Hence $F_i \subset f^{-1}(V_i)$, $f^{-1}(V_i) \in \alpha\psi O(X)$ for $i = 1, 2$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Thus X is $\alpha\psi$-normal.

Theorem 30. Let X be $\alpha\psi$-connected and Y be T_1. If $f : X \rightarrow Y$ is contra $\alpha\psi$-continuous, then f is constant.

Proof. Since Y is T_1 space, $v = \{f^{-1}(y) : y \in Y\}$ is a disjoint $\alpha\psi$-open partition of X. If $|v| \geq 2$, then X is the union of two non-empty $\alpha\psi$-open sets. Since X is $\alpha\psi$-connected, $|v| = 1$. Therefore, f is constant.

Theorem 31. If $f : X \rightarrow Y$ is a contra $\alpha\psi$-continuous function from a $\alpha\psi$-connected space X onto any space Y, then Y is not a discrete space.
Proof. Suppose that Y is discrete. Let A be a proper non-empty open and closed subset of Y. Then $f^{-1}(A)$ is a proper nonempty $\alpha\psi$-clopen subset of X, which is a contradiction to the fact X is $\alpha\psi$-connected.

Definition 32. A space X is said to be $\alpha\psi$-T_2 if for each pair of distinct points x and y in X, there exists $U \in \alpha\psi O(X, x)$ and $V \in \alpha\psi O(Y, y)$ such that $U \cap V = \phi$.

Theorem 33. Let X and Y be topological spaces. If

1. for each pair of distinct points x and y in X there exists a function f of X into Y such that $f(x) \neq f(y)$,
2. Y is an Urysohn space,
3. f is contra $\alpha\psi$-continuous at x and y, then X is $\alpha\psi$-T_2.

Proof. Let x and y be any distinct points in X. Then, there exists a Urysohn space Y and a function $f : X \to Y$ such that $f(x) \neq f(y)$ and f is contra $\alpha\psi$-continuous at x and y. Let $a = f(x)$ and $b = f(y)$. Then $a \neq b$. Since Y is Urysohn space, there exists open sets V and W containing a and b, respectively, such that $cl(V) \cap cl(W) = \phi$. Since f is contra $\alpha\psi$-continuous at x and y, there exist $\alpha\psi$-open sets A and B containing a and b, respectively, such that $f(A) \subseteq cl(V)$ and $f(B) \subseteq cl(W)$. Then $f(A) \cap f(B) = \phi$, so $A \cap B = \phi$. Hence, X is $\alpha\psi$-T_2.

Corollary 34. Let $f : X \to Y$ be contra $\alpha\psi$-continuous injection. If Y is an Urysohn space, then X is $\alpha\psi$-T_2.

References

