IJPAM: Volume 71, No. 3 (2011)
ASYMPTOTICS OF MODIFIED BESSEL
FUNCTIONS OF HIGH ORDER
FUNCTIONS OF HIGH ORDER
Avram Sidi
, Philip E. Hoggan
Computer Science Department
Technion - Israel Institute of Technology
Haifa, 32000, ISRAEL
LASMEA, UMR 6602 CNRS
Université Blaise Pascal
24, Avenue des Landais, 63177, Aubiere Cedex, FRANCE
![$^1$](img1.png)
![$^2$](img2.png)
![$^1$](img1.png)
Technion - Israel Institute of Technology
Haifa, 32000, ISRAEL
![$^2$](img2.png)
Université Blaise Pascal
24, Avenue des Landais, 63177, Aubiere Cedex, FRANCE
Abstract. In this work, we present two sets of full asymptotic expansions for the modified Bessel functions and
and a full asymptotic expansion for
as
and
is fixed with
. In particular, we show that
![\begin{displaymath}
I_\nu(z)\sim\frac{(\frac{1}{2}z)^\nu}{\Gamma(\nu+1)}
\sum^\i...
...\text{as
$\nu\to\infty$,}\quad\vert\arg\nu\vert\leq\pi-\delta ,\end{displaymath}](img9.png)
and
![\begin{displaymath}K_\nu(z)\sim\frac{1}{2}\,\frac{\Gamma(\nu)}{(\frac{1}{2}z)^\n...
...u\to\infty$,}\quad \vert\arg\nu\vert\leq\tfrac{1}{2}\pi-\delta,\end{displaymath}](img10.png)
where, for each
![$m$](img11.png)
![$b_m(z)$](img12.png)
![$m$](img11.png)
![$z^2$](img13.png)
![\begin{displaymath}b_0(z)=1;\quad b_m(z)=\sum^m_{k=1}(-1)^{m-k}\frac{S(m,k)}{k!} (\tfrac{1}{4}z^2)^k,\quad m=0,1,\ldots,\end{displaymath}](img14.png)
where
![$S(m,k)$](img15.png)
Received: June 5, 2011
AMS Subject Classification: 33C10, 34E05, 35C20, 41A60
Key Words and Phrases: modified Bessel functions, high order, asymptotic expansions
Download paper from here.
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2011
Volume: 71
Issue: 3