THE VARIATIONAL PROBLEM IN LAGRANGE SPACES
ENDOWED WITH \((\gamma, \beta)\) METRICS

T.N. Pandey\(^1\), V.K. Chaubey\(^2\) §

\(^1\)Department of Mathematics and Statistics
D.D.U. Gorakhpur University
Gorakhpur, U.P., 273009, INDIA

Abstract: In the present paper we studied the variational problem of Lagrange spaces with \((\gamma, \beta)\)-metrics. The results follow the classical ones and some results of R. Miron concerning Lagrange spaces.

AMS Subject Classification: 53B40, 53C60
Key Words: Lagrange space, Finsler space with \((\gamma, \beta)\)-metric, Euler-Lagrange equations

1. Introduction

In the paper B. Nicolaescu [3, 4] has studied the variational problem of Lagrange spaces with \((\alpha, \beta)\)-metrics. In the present paper we studied the variational problem of Lagrange spaces with \((\gamma, \beta)\)-metrics. Result obtain in the paper has been put in the form of seven propositions.

2. Preliminaries

Let \((TM, \tau, M)\) be the tangent bundle of a \(C^\infty\)-differentiable real, n-dimensional manifold M. If \((U, \phi)\) is a local chart on M, then the coordinates of a point \(u = (x, y) \in \tau^{-1}(U) \subset TM\) will be denoted by \((x, y)\). R. Miron [1] given following defintions:

Definition 1. a) A differentiable Lagrangian on TM is a mapping \(L : (x, y) \in TM \rightarrow L(x, y) \in R, \forall u = (x, y) \in TM\), which is of class \(C^\infty\) on
\(\hat{T}M = TM \setminus \{0\} \) and is continuous on the null section of the projection \(\tau : TM \rightarrow M \), such that

\[
g_{ij} = \frac{1}{2} \frac{\partial^2 L(x, y)}{\partial y^i \partial y^j}
\]

is a \((0, 2)\)-type symmetric d-tensor field on \(TM \).

b) A differential Lagrangian \(L \) on \(TM \) is said to be regular if

\[
\text{rank}\|g_{ij}(x, y)\| = n, \quad \forall (x, y) \in \hat{T}M.
\]

We will further use its contrvariant d-tensor \(g^{ij}(x, y) \) given by \(g^{ik}g_{kj} = \delta^i_j \).

c) A Lagrange space is a pair \(\mathcal{L} = (M, L) \) formed by a smooth real \(n \)-dimensional manifold \(M \) and a regular differentiable Lagrangian \(L \) on \(M \), for which the d-tensor field \(g_{ij} \) from (1) has constant signature on \(\hat{T}M \).

Let \(L : TM \rightarrow R \) be a differentiable Lagrangian on the manifold \(M \), which is not necessarily regular. A curve \(c : t \in [0, 1] \rightarrow (x^i(t)) \in U \subset M \) having the image in a domain of a chart \(U \) of \(M \), has the extension to \(\hat{T}M \) given by \(c^\star : t \in [0, 1] \rightarrow (x^i(t), \frac{dx^i(t)}{dt}) \in \tau^{-1}(U) \).

The integral of action of the Lagrangian \(L \) on the curve \(c \) is given by the functional

\[
I(c) = \int_0^1 L(x(t), \frac{dx}{dt}) \, dt.
\]

Consider the curve \(c_\epsilon : t \in [0, 1] \rightarrow (x^i(t) + \epsilon v^i(t)) \in M \), which have the same endpoints \(x^i(0), x^i(1) \) as the curve \(c \), \(v^i(0) = v^i(1) = 0 \) and \(\epsilon \) is a real number, sufficiently small in absolute value, such that \(Imc_\epsilon \in U \). The extension of the curve \(c_\epsilon \) to \(TM \) is

\[
c_\epsilon^\star : t \in [0, 1] \rightarrow (x^i(t) + \epsilon v^i(t), \frac{dx^i}{dt} + \epsilon \frac{dv^i}{dt}) \in \tau^{-1}(U).
\]

The integral of action of the Lagrangian \(L \) on the curve \(c_\epsilon \) is,

\[
I(c_\epsilon) = \int_0^1 L(x + \epsilon v, \frac{dx}{dt} + \epsilon \frac{dv}{dt}) \, dt
\]

A necessary condition for \(I(c) \) to be an extremal value \(I(c_\epsilon) \) is

\[
\left. \frac{dI(c_\epsilon)}{d\epsilon} \right|_{\epsilon=0} = 0
\]
In order that the functional $I(c)$ be an extremal value of $I(c_\epsilon)$ it is necessary that c be the solution of the Euler-Lagrange equations,

$$E_i(L) = \frac{\partial L}{\partial x^i} - \frac{d}{dt} \left(\frac{\partial L}{\partial y^i} \right) = 0, \quad y^i = \frac{dx^i}{dt}.$$

3. The Fundamental Tensor of a Lagrange Space with (γ, β)-Metric

In 2011, Pandey and Chaubey [2], introduce the concept of (γ, β)-metric, where $\gamma^3 = a_{ijk}(x)y^i y^j y^k$ is a cubic metric and $\beta = b_i(x)y^i$ is a one form metric on TM.

Definition 2. A Lagrange space $L^n = L(M, L(x, y))$ is called with (γ, β)-metric if the fundamental function $L(x, y)$ is a function L, which depends only on $\gamma(x, y)$ and $\beta(x, y)$,

$$L = T(\gamma(x, y), \beta(x, y)).$$

Here, we shall use the following notations throughout the whole paper,

$$\dot{\gamma} = \frac{\partial \gamma}{\partial y^i}, \quad \dot{\beta} = \frac{\partial \beta}{\partial y^i}, \quad \dot{\gamma} \dot{\gamma} = \frac{\partial^2 \gamma}{\partial y^i \partial y^j}, \quad T_\gamma = \frac{\partial T}{\partial \gamma}, \quad T_\beta = \frac{\partial T}{\partial \beta},$$

$$T_{\gamma \gamma} = \frac{\partial^2 T}{\partial \gamma^2}, \quad T_{\gamma \beta} = \frac{\partial^2 T}{\partial \gamma \partial \beta}, \quad T_{\beta \beta} = \frac{\partial^2 T}{\partial \beta^2}.$$

Proposition 1. We have the relations

$$\dot{\gamma} = \gamma^{-1} y_i, \quad \dot{\beta} = \gamma^{-1} a_{ii}(x, y) - \gamma^{-3} y_1 y_j, \quad \dot{\gamma} \dot{\beta} = b_i(x), \quad \dot{\beta} = 0,$$

where,

$$y_i = a_{ij}(x, y)y^j, \quad a_{ijk}y^j y^k = a_i(x, y), \quad 2a_{ijk}y^k = a_{ij}.$$

We introduce the moments of the Lagrangian $L(x, y) = T(\gamma(x, y), \beta(x, y))$,

$$p_i = \frac{1}{2} \frac{\partial L}{\partial y^i} = \frac{1}{2} \left(T_\gamma \dot{\gamma} + T_\beta \dot{\beta} \right)$$

and we get the following propositions.

Proposition 2. The moments of the Lagrangian $L(x, y)$ are given by

$$p_i = \rho y_i + \rho_1 b_i$$

2
where, \(\rho = \frac{1}{2} \gamma^{-1} \mathcal{L}_\gamma \) and \(\rho_1 = \frac{1}{2} \mathcal{L}_\beta \).

The two scalar functions defined in (3) are called the principal invariants of the Lagrange space \(L^n \).

Proposition 3. The derivatives of principal invariants of the Lagrange space \(L^n \) are given by

\[
\dot{\rho}_i = \rho - 2 y_i + \rho_{-1} b_i, \quad \dot{\rho}_1 = \rho_{-1} y_i + \rho_0 b_i,
\]

where, \(\rho_{-2} = \frac{1}{2} \gamma^{-2}(\mathcal{L}_{\gamma\gamma} - \gamma^{-1} \mathcal{L}_\gamma) \), \(\rho_{-1} = \frac{1}{2} \gamma^{-1} \mathcal{L}_{\gamma\beta} \), \(\rho_0 = \frac{1}{2} \mathcal{L}_{\beta\beta} \).

Proposition 4. The Energy

\[
E_L = y^i \frac{\partial L}{\partial y^i} - L
\]

of a Lagrangian with \((\gamma, \beta)\)-metric is given by,

\[
E_L = \gamma^{-1} \mathcal{L}_\gamma + \beta \mathcal{L}_{\beta\beta} - \mathcal{L}.
\]

We can determine the fundamental tensor \(g_{ij} \) of the Lagrange space with \((\gamma, \beta)\)-metric, as follows.

Proposition 5. The fundamental tensor \(g_{ij} \) of the Lagrange space with \((\gamma, \beta)\)-metric is

\[
g_{ij} = 2 \rho a_{ij} + c_i c_j
\]

where, \(c_i = q_{-1} y_i + q_0 b_i \) and \(q_{-1}, q_0 \) satisfy the equations \(\rho_0 = (q_0)^2 \), \(\rho_{-1} = q_0 q_{-1} \), \(\rho_{-2} = (q_{-1})^2 \).

Proposition 6. The reciprocal tensor \(g^{ij} \) of the fundamental tensor \(g_{ij} \) is given by

\[
g^{ij} = \frac{1}{2\rho} a^{ij} - \frac{1}{(1 + c^2)} c^i c^j
\]

where, \(c^i = \frac{1}{2} \rho^{-1} a^{ij} c_j \) and \(c^i c_i = c^2 \).

4. Euler-Lagrange Equations in Lagrange Spaces with \((\gamma, \beta)\)-Metric

The Euler-Lagrange equations of the Lagrange spaces with \((\gamma, \beta)\)-metric are,

\[
E_i(\mathcal{L}) = \frac{\partial \mathcal{L}}{\partial x^i} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial y^i} \right) = 0, \quad y^i = \frac{dx^i}{dt}
\]
considering the relations,
\[\frac{\partial \mathcal{L}}{\partial x^i} = \mathcal{L}_\gamma \frac{\partial \gamma}{\partial x^i}, \quad \frac{\partial \mathcal{L}}{\partial y^i} = \mathcal{L}_\gamma \frac{\partial \gamma}{\partial y^i} + \mathcal{L}_\beta \frac{\partial \beta}{\partial y^i}, \]
\[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial y^i} \right) = \mathcal{L}_\gamma \frac{d\gamma}{dt} \frac{\partial \gamma}{\partial y^i} + \mathcal{L}_\beta \frac{d\beta}{dt} \frac{\partial \beta}{\partial y^i} + \mathcal{L}_\gamma \frac{d}{dt} \left(\frac{\partial \gamma}{\partial y^i} \right) + \mathcal{L}_\beta \frac{d}{dt} \left(\frac{\partial \beta}{\partial y^i} \right). \]

By direct calculation, we have
\[E_i(\mathcal{L}) = \mathcal{L}_\gamma E_i(\gamma) + \mathcal{L}_\beta E_i(\beta) - \frac{\partial \gamma}{\partial y^i} \frac{d\mathcal{L}_\gamma}{dt} - \frac{\partial \beta}{\partial y^i} \frac{d\mathcal{L}_\beta}{dt}, \]
where
\[\frac{d\mathcal{L}_\gamma}{dt} = \mathcal{L}_{\gamma\gamma} \frac{d\gamma}{dt} + \mathcal{L}_{\gamma\beta} \frac{d\beta}{dt} \]
and
\[\frac{d\mathcal{L}_\beta}{dt} = \mathcal{L}_{\beta\gamma} \frac{d\gamma}{dt} + \mathcal{L}_{\beta\beta} \frac{d\beta}{dt}. \]

Then, we get
\[E_i(\mathcal{L}) = \mathcal{L}_\gamma E_i(\gamma) + \mathcal{L}_\beta E_i(\beta) - \frac{\partial \gamma}{\partial y^i} (\mathcal{L}_{\gamma\gamma} \frac{d\gamma}{dt} + \mathcal{L}_{\gamma\beta} \frac{d\beta}{dt}) - \frac{\partial \beta}{\partial y^i} (\mathcal{L}_{\beta\gamma} \frac{d\gamma}{dt} + \mathcal{L}_{\beta\beta} \frac{d\beta}{dt}). \]

As well we have
\[E_i(\gamma) = \frac{1}{3\gamma^2} E_i(\gamma^3) + \frac{1}{\gamma^2} \frac{d\gamma}{dt}, \quad E_i(\beta) = F_{ir} \frac{dx^r}{dt}, \]
where
\[F_{ir} = \frac{\partial A_r}{\partial x^i} - \frac{\partial A_i}{\partial x^r} \]
is the electromagnetic tensor field. Finally we have the following relation
\[E_i(\mathcal{L}) = \frac{2}{3\gamma} \rho E_i(\gamma^3) + \frac{2}{3\gamma} \rho \frac{\partial \gamma}{\partial y^i} \frac{d\gamma}{dt}^2 + 2 \rho_1 F_{ir} \frac{dx^r}{dt} - \frac{\partial \gamma}{\partial y^i} (\mathcal{L}_{\gamma\gamma} \frac{d\gamma}{dt} + \mathcal{L}_{\gamma\beta} \frac{d\beta}{dt}) - \frac{\partial \beta}{\partial y^i} (\mathcal{L}_{\beta\gamma} \frac{d\gamma}{dt} + \mathcal{L}_{\beta\beta} \frac{d\beta}{dt}). \]

Proposition 7. The Euler-Lagrange equation in the Lagrange space \(L^n \) endowed with \((\gamma, \beta)\)-metric are,
\[E_i(\mathcal{L}) = 0, \quad y^i = \frac{dx^i}{dt}. \]

If we have the natural parametrization of the curve \(\in [0, 1] \rightarrow (x^i(t) \in M) \) relative to the cubic metric \(a_{ijk}(x) \), then \(\gamma(x, \frac{dx}{dt}) = 1 \). Then we get
Proposition 8. In the canonical parametrization the Euler-Lagrange equations in L^n spaces with (γ, β)-metric are,

$$E_i(\mathcal{L}) = \frac{2}{3\gamma}\rho E_i(\gamma^3) + \frac{2}{3\gamma}\rho \frac{\partial \gamma}{\partial y^i} \frac{d\gamma}{dt} + 2\rho_1 F_{ir} \frac{dx^r}{dt} - \frac{\partial \beta}{\partial y^i}(T_{\beta\gamma} \frac{d\gamma}{dt} + T_{\beta\beta} \frac{d\beta}{dt}) = 0.$$ (5)

Proposition 9. If the 1-form β is constant on the integral curve c of the Euler-Lagrange equations, then (6) rewrite as the Lorentz equations of the space L^n,

$$E_i(\mathcal{L}) = \frac{2}{3\gamma}\rho E_i(\gamma^3) + \frac{2}{3\gamma}\rho \frac{\partial \gamma}{\partial y^i} \frac{d\gamma}{dt} + 2\rho_1 F_{ir} \frac{dx^r}{dt} = 0$$

Acknowledgments

Author V.K. Chaubey is very much thankful to NBHM-DAE of Goverment of INDIA for their financial assistance as a Postdoctoral Fellowship.

References

