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Abstract: A group divisible design GDD(v = v1 + v2 + · · ·+ vg, g, k, λ1, λ2) is
an ordered triple (V,G,B), where V is a v-set of symbols, G is a partition of V
into g sets of size v1, v2, . . . , vg, each set being called group, and B is a collection
of k-subsets (called blocks) of V , such that each pair of symbols from the same
group occurs in exactly λ1 blocks; and each pair of symbols from different
groups occurs in exactly λ2 blocks. Here, we focus on an existence problem of
GDDs with two associate classes or when g = 2, and with blocks of size 3, when
the required designs have two groups of unequal sizes and λ2 = 4. We obtain
the necessary conditions and prove that these conditions are sufficient.
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1. Introduction

A balanced incomplete block design BIBD(v, b, r, k, λ) is a set S of v elements
together with a collection B of b k-subsets of S, called blocks, where each point
occurs in r blocks and each pair of distinct elements occurs in exactly λ blocks.
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The number |S| = v is called the order of the BIBD. We often represent such
BIBD by the order pair (S,B). More details involve with BIBDs can be explored
in [5], [6], and [8].

A group divisible design GDD(v = v1+v2+· · ·+vg, g, k, λ1, λ2) is an ordered
triple (V,G,B), where V is a v-set of symbols, G is a partition of V into g sets of
size v1, v2, . . . , vg, each set being called group, and B is a collection of k-subsets
(called blocks) of V , such that each pair of symbols from the same group occurs
in exactly λ1 blocks; and each pair of symbols from different groups occurs in
exactly λ2 blocks (see [5], [6]). Elements occurring together in the same group
are called first associates, and elements occurring in different groups we called
second associates. We say that the GDD is defined on the set V . The existence
of such GDDs has been of interest over the years, going back to at least the
work of Bose and Shimamoto in 1952 who began classifying such designs, see
[1]. The existence question for k = 3 has been solved by Sarvate, Fu and Rodger
[5], [6] when all groups are the same size.

In this paper, we continue to focus on blocks of size 3, solving the prob-
lem when the required designs having two groups of unequal size, namely, we
consider the problem of determining necessary conditions for an existence of
GDD(v = m + n, 2, 3, λ1, λ2) and prove that the conditions are sufficient.
Since we are dealing on GDDs with two groups and block size 3, we will use
GDD(m,n;λ1, λ2) for GDD(v = m+ n, 2, 3, λ1, λ2) from now on, and we refer
to the blocks as triples. We denote (X,Y ;B) for a GDD(m,n;λ1, λ2) if X and
Y are m-set and n-set, respectively. Chaiyasana, Hurd, Punnim and Sarvate
[2] have written the first paper in this direction. In particular they have com-
pletely solved the problem of determining all pairs of integers (n, λ) in which
a GDD(1, n; 1, λ) exists. More work intends to solve the existence problem of
a GDD(m,n;λ1, λ2) for possible m,n, λ1 and λ2. Lapchinda and Pabhapote
[7] solved the problem when the designs have unequal sizes and λ1 − λ2 = 1.
Pabhapote and Punnim [9] investigate all triples of integers (m,n, λ) in which a
GDD(m,n;λ, 1) exists. Recently, the existence of the design GDD(m,n;λ, 2) is
completed solved when λ ≥ 2, see [10]. Moreover, Chaiyasana and Pabhapote
[3] investigate all triples of integers (m,n, λ) in which a GDD(m,n;λ, 3), λ ≥ 3,
exists. Analogously, in this paper, we continue to reveal all triples of integers
(m,n, λ) in which a GDD(m,n;λ, 4) exists for λ ≥ 4. When λ ≤ 3, a construc-
tion to prove the sufficiency seems to be much more complicated, which in fact
remains an open problem in general case. Thus we here focus on λ ≥ 4, and
for convenience we present quick constructions based on known results from
previous work to obtain the sufficiency of the following main theorem:

Theorem A. Let m, n and λ ≥ 4 be positive integers with m 6= 2 and
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n 6= 2. There exists a GDD(m, n;λ, 4) if and only if

1. 3 | λ[m(m− 1) + n(n− 1)] + 2mn, and

2. 2 | λ(m− 1) and 2 | λ(n− 1).

2. Preliminary Results

We will see that necessary conditions on the existence of a GDD(m,n;λ1, λ2)
can be easily obtained by describing it graphically as follows. Let λKv denote
the graph on v vertices in which each pair of vertices is joined by λ edges.
Let G1 and G2 be graphs. The graph G1 ∨λ G2 is formed from the union of
G1 and G2 by joining each vertex in G1 to each vertex in G2 with λ edges.
A G-decomposition of a graph H is a partition of the edges of H such that
each element of the partition induces a copy of G. Thus the existence of a
GDD(m,n;λ1, λ2) is easily seen to be equivalent to the existence of a K3-
decomposition of λ1Km ∨λ2

λ1Kn. The graph λ1Km ∨λ2
λ1Kn is of order

m+ n and size λ1[
(

m
2

)

+
(

n
2

)

] + λ2mn. It contains m vertices of degree λ1(m−
1) + λ2n and n vertices of degree λ1(n − 1) + λ2m. Thus the existence of a
K3-decomposition of λ1Km ∨λ2

λ1Kn implies

1. 3 | λ1[
(

m
2

)

+
(

n
2

)

] + λ2mn, and

2. 2 | λ1(m− 1) + λ2n and 2 | λ1(n− 1) + λ2m.

We will review some known results concerning triple designs that will be
used in the sequel, most of which are taken from [8].

A BIBD(v, 3, 1) is usually called Steiner triple system and is denoted by
STS(v). Let (V,B) be an STS(v). Then the number of triples b = |B| =
v(v − 1)/6.

The next theorem concludes the conditions for the existence of a BIBD(v, 3, 1).

Theorem 2.1. (see [8]) Let v be a positive integer.

1. There exists an STS(v) if and only if v ≡ 1 or 3 (mod 6).

The following notations will be used for our constructions.

1. Let V be a v-set. Then there may be many different STS(v)s that can be
constructed on the set V . Let STS(V ) be defined as

STS(V ) = {B : (V,B) is an STS(v)}.
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BIBD(V, 3, λ) can be defined similarly, That is:

BIBD(V, 3, λ) = {B : (V,B) is a BIBD(v, 3, λ)}.

Let X and Y be disjoint sets of cardinality m and n, respectively. We
define GDD(X,Y ;λ1, λ2) as

GDD(X,Y ;λ1, λ2) = {B : (X,Y ;B) is a GDD(m,n;λ1, λ2)}.

2. When we say that B is a collection of subsets (blocks) of a v-set V , B may
contain repeated blocks. Thus “ ∪ ” in our construction will be used for
the union of multi-sets.

When k = 3, a BIBD(v, 3, λ) is also called a λ-fold triple system . The
following results on existence of λ-fold triple systems are well-known (see e.g.
[8]).

Theorem 2.2. Let n be a positive integer. Then a BIBD(n, 3, λ) exists
if and only if λ and n are in one of the following cases:

(a) λ ≡ 0 (mod 6) and for all positive integers n 6= 2,

(b) λ ≡ 1 or 5 (mod 6) and for all n with n ≡ 1 or 3 (mod 6),

(c) λ ≡ 2 or 4 (mod 6) and for all n with n ≡ 0 or 1 (mod 3), and

(d) λ ≡ 3 (mod 6) and for all odd integers n.

The existence of a GDD(m,n;λ1, λ2) for some specific 4-tuples (m,n, λ1, λ2)
satisfying the provided conditions is concluded in the next two theorems.

Theorem 2.3. (see [2]) Let v ≥ 3 be an integer. There exists a GDD(1, v;
1, λ) if and only if 2 | (v − 1− λ) and 6 | v(v − 1− λ).

Theorem 2.4. (see [9]) Let m and n be positive integers with m 6= 2
and n 6= 2. There exists a GDD(m,n;λ, 1) if and only if

1. 3 | λ[m(m− 1) + n(n− 1)] + 2mn, and

2. 2 | λ(m− 1) + n and 2 | λ(n− 1) +m.
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3. GDD(m,n;λ, 4)

Let λ be a positive integer. We consider in this section the problem of deter-
mining all pairs of integers {m,n} in which a GDD(m,n;λ, 4) exists. Recall
that the existence of GDD(m,n;λ, 4) implies 3 | λ[m(m−1)+n(n−1)]+2mn,
2 | λ(m− 1) and 2 | λ(n− 1). Let

S4(λ) := {{m,n} : a GDD(m,n;λ, 4) exists}.

The next lemma shows the necessity of Theorem A, in other words, it
provides all possible pairs of integers {m,n} in which a GDD(m,n;λ, 4) exists
for a given λ.

Lemma 3.1. Let t be a non-negative integer:

(a) If {m,n} ∈ S4(6t + 4), then there exist non-negative integers h and k
such that {m,n} ∈ {{6k + 1, 6h + 2}, {6k + 1, 6h + 3}, {6k + 1, 6h + 5},
{6k + 1, 6h + 6}, {6k + 2, 6h + 2}, {6k + 2, 6h + 4}, {6k + 2, 6h + 5},
{6k + 3, 6h + 3}, {6k + 3, 6h + 4}, {6k + 3, 6h + 6}, {6k + 4, 6h + 5},
{6k + 4, 6h + 6}, {6k + 5, 6h+ 5}, {6k + 6, 6h + 6}}.

(b) If {m,n} ∈ S4(6t+5), then there exist non-negative integers h and k such

that {m,n} ∈ {{6k + 1, 6h + 3}, {6k + 3, 6h + 3}}.

(c) If {m,n} ∈ S4(6t + 6), then there exist non-negative integers h and k
such that {m,n} ∈ {{6k + 1, 6h + 3}, {6k + 1, 6h + 6}, {6k + 2, 6h + 3},
{6k + 2, 6h + 6}, {6k + 3, 6h + 3}, {6k + 3, 6h + 4}, {6k + 3, 6h + 5},
{6k + 3, 6h + 6}, {6k + 4, 6h+ 6}, {6k + 5, 6h + 6}, {6k + 6, 6h+ 6}}.

(d) If {m,n} ∈ S4(6t + 7), then there exist non-negative integers h and k
such that {m,n} ∈ {{6k + 1, 6h + 3}, {6k + 1, 6h + 5}, {6k + 3, 6h + 3},
{6k + 5, 6h + 5}}.

(e) If {m,n} ∈ S4(6t + 8), then there exist non-negative integers h and k
such that {m,n} ∈ {{6k + 1, 6h + 3}, {6k + 1, 6h + 6}, {6k + 3, 6h + 3},
{6k + 3, 6h + 4}, {6k + 3, 6h+ 6}, {6k + 4, 6h + 6}, {6k + 6, 6h+ 6}}.

(f) If {m,n} ∈ S4(6t+9), then there exist non-negative integers h and k such

that {m,n} ∈ {{6k + 1, 6h + 3}, {6k + 3, 6h + 3}, {6k + 3, 6h + 5}}.

Proof. The proof follows from solving the corresponding systems of congru-
ences.
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The rest of the paper is devoted to show the existence of a GDD(m,n;λ, 4)
for each pair of integers (m,n) satisfying λ ≥ 4 in Lemma 3.1. The following
cases will be treated specifically while the rest cases have a similar construction.

Special case I : {6k + 2, 6h+ 2} ∈ S4(6t+ 4).

Special case II : {6k + 2, 6h + 3} ∈ S4(6t+ 6).

Special case III : {6k + 2, 6h + 6} ∈ S4(6t+ 6).

Special case IV : {6k + 3, 6h + 5} ∈ S4(6t+ 6).

Special case V : {6k + 5, 6h + 6} ∈ S4(6t+ 6).

Special case VI : {6k + 3, 6h + 5} ∈ S4(6t+ 9).

Given two positive integers m and n such that m+n ≥ 4, the construction
of the remaining cases beyond three special cases above can be done by first
building a BIBD(m+n, 3, 4), and then completing the construction by building
blocks for the first associate entries to occur together in more λ− 4 blocks. We
thus can conclude the followings:

Lemma 3.2. Let h, k and t be non-negative integers. Then

(a) {6k + 1, 6h + 2}, {6k + 1, 6h + 3}, {6k + 1, 6h + 5}, {6k + 1, 6h + 6},
{6k + 2, 6h + 4}, {6k + 2, 6h + 5}, {6k + 3, 6h + 3}, {6k + 3, 6h + 4},
{6k + 3, 6h + 6}, {6k + 4, 6h + 5}, {6k + 4, 6h + 6}, {6k + 5, 6h + 5},
{6k + 6, 6h + 6} ∈ S4(6t+ 4),

(b) {6k + 1, 6h + 3}, {6k + 3, 6h + 3} ∈ S4(6t+ 5),

(c) {6k + 1, 6h + 3}, {6k + 1, 6h + 6}, {6k + 3, 6h + 3}, {6k + 3, 6h + 4},
{6k + 3, 6h + 6}, {6k + 4, 6h + 6}, {6k + 6, 6h + 6} ∈ S4(6t+ 6),

(d) {6k + 1, 6h + 3}, {6k + 1, 6h + 5}}, {6k + 3, 6h + 3}, {6k + 5, 6h + 5} ∈
S4(6t+ 7),

(e) {6k + 1, 6h + 3}, {6k + 1, 6h + 6}, {6k + 3, 6h + 3}, {6k + 3, 6h + 4},
{6k + 3, 6h + 6}, {6k + 4, 6h + 6}, {6k + 6, 6h + 6} ∈ S4(6t+ 8),

(f) {6k + 1, 6h + 3}, {6k + 3, 6h + 3} ∈ S4(6t+ 9).

Proof. Let λ be given. Let {m,n} be such a pair from the list above
corresponding to the given λ. Let X be an m-set and Y be an n-set. By
Theorem 2.2 for a 4-fold triple system, BIBD(X ∪ Y, 3, 4) 6= ∅ since m + n ≡
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0 or 1 (mod 3). Let B1 ∈ BIBD(X∪Y, 3, 4). Furthermore, since λ ≥ 4, Theorem
2.2 for a (λ-4)-fold triple system also guarantees that both BIBD(X, 3, λ −
4) and BIBD(Y, 3, λ − 4) are not empty. Let B2 ∈ BIBD(X, 3, λ − 4) and
B3 ∈ BIBD(Y, 3, λ − 4). Now let B = B1 ∪ B2 ∪ B3. Hence, (X,Y ;B) forms a
GDD(m,n;λ, 4) as desired.

Next we consider the six special cases as follows.

Lemma 3.3. Let h, k and t be non-negative integers. Then

(a) {6k + 2, 6h + 2} ∈ S4(6t+ 4),

(b) {6k + 2, 6h + 3} ∈ S4(6t+ 6),

(c) {6k + 2, 6h + 6} ∈ S4(6t+ 6),

(d) {6k + 3, 6h + 5} ∈ S4(6t+ 6),

(e) {6k + 5, 6h + 6} ∈ S4(6t+ 6), and

(f) {6k + 3, 6h + 5} ∈ S4(6t+ 9).

Proof. Note that the proofs for (a)-(f) use the same technique though we
spell all details out.

(a) Let Xk be a (6k + 2)-set and Yh be a (6h + 2)-set. Since Xk ∪ Yh is of
size 6k+6h+4, by Theorem 2.2 for a 4-fold triple system, BIBD(Xk ∪Yh, 3, 4)
is not empty; so, let B1 be in BIBD(Xk ∪ Yh, 3, 4). Besides, by Theorem 2.2 for
a 6t-fold triple system, we have B2 ∈ BIBD(Xk, 3, 6t) and B3 ∈ BIBD(Yh, 3, 6t).
By setting B = B1∪B2∪B3, we have that (Xk, Yh;B) forms a GDD(6k+2, 6h+
2; 6t+ 4, 4).

(b) LetXk be a (6k+2)-set containing a and Yh be a (6h+3)-set. Since (Xk\
{a})∪Yh is of size 6k+6h+4, it follows by Theorem 2.2 for a 4-fold triple system
that BIBD((Xk \ {a})∪ Yh, 3, 4) is not empty. Let B1 be in BIBD((Xk \ {a})∪
Yh, 3, 4). SinceXk\{a} and Yh are of size 6k+1 and 6h+3, respectively, Theorem
2.2 for a 1-fold triple system confirms that there exists B2 ∈ BIBD(Xk\{a}, 3, 1)
and B3 ∈ BIBD(Yh, 3, 1). Moreover, Theorem 2.3 ensures that there exist B4 ∈
GDD({a},Xk \ {a}; 1, 6) and B5 ∈ GDD({a}, Yh; 1, 4). Lastly, use Theorem 2.2
for a 6t-fold triple system to get B6 ∈ BIBD(Xk, 3, 6t) and B7 ∈ BIBD(Yh, 3, 6t).
Hence, when B = B1∪B2∪ . . .∪B7, we have that (Xk, Yh;B) forms a GDD(6k+
2, 6h + 3; 6t + 6, 4) as desired.

(c) Let Xk be a (6k + 2)-set containing a and Yh be a (6h + 6)-set. Since
(Xk \ {a})∪Yh is of size 6k+6h+7, by Theorem 2.2 for a 4-fold triple system,
BIBD((Xk \ {a} ∪Yh), 3, 4) is not empty. Let B1 ∈ BIBD((Xk \ {a})∪ Yh, 3, 4).
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Since (Xk \{a}) is of size 6k+1, Theorem 2.2 for a 1-fold triple system confirms
that there exists B2 ∈ BIBD(Xk \ {a}, 3, 1). Now consider {a} with other
elements, by Theorem 2.3, there exist B3 ∈ GDD({a},Xk \ {a}; 1, 6), B4 ∈
GDD({a}, Yh; 1, 1) and B5 ∈ GDD({a}, Yh; 1, 3). Besides, Theorem 2.2 for a
6t-fold triple system gives us B6 ∈ BIBD(Xk, 3, 6t) and B7 ∈ BIBD(Yh, 3, 6t).
Therefore, setting B = B1∪B2∪. . .∪B7 yields that (Xk, Yh;B) forms our desired
GDD(6k + 2, 6h + 6; 6t+ 6, 4).

(d) Let Xk be a (6k + 3)-set and Yh be a (6h + 5)-set containing a. Since
the sizes of Kk and Xk ∪ (Yh \ {a}), using Theorem 2.2 for 1-fold and 4-
fold triple systems, we have B1 ∈ BIBD(Xk, 3, 1) and B2 ∈ BIBDXk ∪ (Yh \
{a}), 3, 4). Next consider {a} with other elements, by Theorem 2.3, there ex-
ist B3 ∈ GDD({a},Xk; 1, 4) and B4 ∈ GDD({a}, Yh \ {a}; 1, 3). Lastly, Since
both Xk and Yh have odd order, by Theorem 2.2 for a 6t-fold triple system,
there exist B5 ∈ BIBD(Xk, 3, 6t) and B6 ∈ BIBD(Yh, 3, 6t). Therefore, setting
B = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B4 ∪ B5 ∪ B6 yields that (Xk, Yh;B) forms our desired
GDD(6k + 3, 6h + 5; 6t+ 6, 4).

(e) Let Xk be a (6k + 5)-set containing a and Yh be a (6h + 6)-set. Since
(Xk \ {a}) ∪ Yh is of size 6k + 6h + 10, by Theorem 2.2 for a 4-fold triple
system, we have B1 ∈ BIBD((Xk \ {a}) ∪ Yh, 3, 4). Next consider {a} with
other elements, by Theorem 2.3, there exist B2 ∈ GDD({a},Xk \ {a}; 1, 3)
and B3 ∈ GDD({a}, Yh; 1, 1) and B4 ∈ GDD({a}, Yh; 1, 3). Lastly, Since both
Xk and Yh have odd order, by Theorem 2.2 for a 6t-fold triple system, there
exist B5 ∈ BIBD(Xk, 3, 6t) and B6 ∈ BIBD(Yh, 3, 6t). Therefore, setting B =
B1 ∪ B2 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6 yields that (Xk, Yh;B) forms our desired
GDD(6k + 5, 6h + 6; 6t+ 6, 4).

(f) Let Xk be a (6k + 3)-set and Yh be a (6h + 5)-set containing a. First,
apply Theorem 2.2 for 4-fold triple systems Xk ∪ (Yh \ {a}), Xk and Yh \ {a},
we have B1 ∈ BIBD(Xk ∪ (Yh \ {a}), 3, 4), B2 ∈ BIBD(Xk, 3, 4) and B3 ∈
BIBD(Yh \ {a}, 3, 4), respectively. Next consider {a} with other elements, by
Theorem 2.3, there exist B4 ∈ GDD({a},Xk ; 1, 4) and B5 ∈ GDD({a}, Yh \
{a}; 1, 9). Lastly, since both Xk and Yh have odd order, by Theorem 2.2 for a
6t-fold triple system, there exist B6 ∈ BIBD(Xk, 3, 6t) and B7 ∈ BIBD(Yh, 3, 6t).
Therefore, setting B = B1∪B2∪. . .∪B7 yields that (Xk, Yh;B) forms our desired
GDD(6k + 3, 6h + 5; 6t+ 9, 4).

Lemmas 3.2and 3.3 illustrate that the necessary conditions in Theorem A
are sufficient. Therefore, our main theorem is completely proved.
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