ORTHOGONAL VECTOR VALUED WAVELETS ON \mathbb{R}_+

P. Manchanda1 §, Vikram Sharma2

$^1,^2$Department of Mathematics
Guru Nanak Dev University
Amritsar, 143005, INDIA

Abstract: Xia and Suter [15] have introduced the notion of vector valued multiresolution analysis on real line \mathbb{R}. Chen and Chang [1] have given an algorithm for construction of vector valued wavelets. Farkov [3] has studied the notion of multiresolution analysis on locally abelian groups and constructed the compactly supported orthogonal p-wavelets on $L^2(\mathbb{R}_+)$. In this paper, we introduce vector valued multiresolution p-analysis on positive half line. We find necessary and sufficient condition for the existence of associated vector valued wavelets. We construct vector valued wavelets on \mathbb{R}_+. Our approach is connected with Walsh-Fourier theory.

AMS Subject Classification: 42A38, 42A55, 42C10, 42C15, 42C40

Key Words: multiresolution p-analysis, Walsh function, Walsh-Fourier transform, orthogonal vector valued wavelets

1. Introduction

Wavelet theory has been studied extensively in both theory and applications. The main advantage of wavelets is their time-frequency localization property. The wavelet transform is a simple mathematical tool that cuts up data or functions into different frequency components, studies each components with a resolution matched to its scale. Many signals in areas like music, speech, image and video images can be efficiently represented by wavelets that are translations and dilations of a single function called mother wavelet with bandpass property.

Received: December 6, 2011

§Correspondence author
Multiresolution Analysis is the heart of wavelet theory. A multiresolution analysis on the set of real numbers \(\mathbb{R} \), introduced by Mallat [9] is an increasing sequence of closed subspaces \(\{V_j\}_{j \in \mathbb{Z}} \) of \(L^2(\mathbb{R}) \) such that \(\bigcap_{j \in \mathbb{Z}} V_j = \{0\}, \bigcup_{j \in \mathbb{Z}} V_j \) is dense in \(\{V_j\}_{j \in \mathbb{Z}} \) and which satisfies \(f(t) \in V_j \) if and only if \(f(2t) \in V_{j+1} \). Also there exists an element \(\phi \in V_0 \) called scaling function such that the collection of integer translates of \(\phi \), i.e. \(\{\phi(t-k)\}_{k \in \mathbb{Z}} \) is a complete orthonormal basis for \(V_0 \). In the definition of multiresolution analysis the dilation factor of 2 can be replaced by an integer \(n > 2 \) and one can construct \(n - 1 \) wavelets to generate the whole space \(L^2(\mathbb{R}) \). A similar generalization of multiresolution analysis can be made in higher dimensions by considering matrix dilations.

Walsh analysis or Dyadic harmonic analysis has been extensively studied: both aspects theory as well as applications, see Golubov et al. [5], Schipp et al. [11]. In his papers, Lang [6-8] constructed compactly supported orthogonal wavelets on the locally compact Cantor dyadic group \(C \) by following the rules and procedures of Mallat and Daubechies via scaling filters. These wavelets turn out to be certain lacunary Walsh series on the \(\mathbb{R}_+ \). Later on, Farkov [4] extended the results of Lang [6-8] on the wavelet analysis on the Cantor dyadic group \(C \) to the locally compact Abelian group \(G \) which is defined for an integer \(\geq 2 \) and coincides with \(C \) when \(p = 2 \). Subsequently, Protasov and Farkov [10] constructed dyadic compactly supported wavelets in \(L^2(\mathbb{R}_+) \), whereas Farkov [3] has given the general construction of all compactly supported orthogonal \(p \)-wavelets in \(L^2(\mathbb{R}_+) \) and proved necessary and sufficient conditions for scaling filters with \(n \) many terms \(p, n \geq 2 \) to generate a \(p \)-MRA in \(L^2(\mathbb{R}_+) \). The approach adopted by Farkov is connected with Walsh-Fourier transform and the elements of M-band wavelet theory.

The paper is organized as follows. In Section 2, we explain certain results of Walsh-Fourier analysis. We present brief review of generalized Walsh functions, Walsh-Fourier transforms and its various properties, multiresolution \(p \)-analysis in \(L^2(\mathbb{R}_+) \) introduced by Farkov [3]. We introduce the concept of vector valued multiresolution \(p \)-analysis on \(\mathbb{R}_+ \) in Section 3. In Section 4, necessary and sufficient condition for the existence of associated vector valued wavelets is given. We construct a vector valued multiresolution analysis on the positive half line with a compactly supported vector valued scaling function \(\Phi \).

2. Walsh-Fourier Analysis

Let \(p \) be a fixed natural number greater than 1. As usual, let \(\mathbb{R}_+ = [0, \infty) \) and \(\mathbb{Z}_+ = \{0, 1, \ldots\} \). Denote by \([x] \) the integer part of \(x \). For \(x \in \mathbb{R}_+ \) and for any
positive integer \(j \),

\[
x_j = [p^j x](\text{mod } p), \quad x_{-j} = [p^{1-j} x](\text{mod } p)
\]

(2.1)

where \(x_j, x_{-j} \in \{0, 1, \ldots, p-1\} \). It is clear that for each \(x \in \mathbb{R}_+ \), \(\exists k = k(x) \in \mathbb{N} \) such that \(x_{-j} = 0, \forall j > k \).

Consider on \(\mathbb{R}_+ \) the addition defined as follows:

\[
x \oplus y = \sum_{j<0} \xi_j p^{-j-1} + \sum_{j>0} \xi_j p^{-j}
\]

(2.2)

with

\[
\xi_j = x_j + y_j(\text{mod } p), \quad j \in \mathbb{Z} \setminus \{0\},
\]

(2.3)

where \(\xi_j \in \{0, 1, 2, \ldots, p-1\} \) and \(x_j, y_j \) are calculated by (2.1). As usual, we write \(z = x \ominus y \) if \(z \oplus y = x \), where \(\ominus \) denotes subtraction modulo \(p \) in \(\mathbb{R}_+ \).

For \(x \in [0, 1) \), let \(r_0(x) \) is given by

\[
r_0(x) = \begin{cases}
1, & x \in [0, 1/p) \\
\varepsilon_p^j, & x \in [jp^{-1}, (j+1)p^{-1}), j = 1, 2, \ldots, p-1
\end{cases}
\]

(2.4)

where \(\varepsilon = \exp\left(\frac{2\pi i}{p}\right) \).

The extension of the function \(r_0 \) to \(\mathbb{R}_+ \) is defined by the equality \(r_0(x+1) = r_0(x), x \in \mathbb{R}_+ \). Then the generalized Walsh functions \(\{\omega_m(x)\}_{m \in \mathbb{Z}_+} \) are defined by

\[
\omega_0(x) \equiv 1, \quad \omega_m(x) = \prod_{j=0}^{k} (r_0(p^j x))^\mu_j,
\]

where \(m = \sum_{j=0}^{k} \mu_j p^j, \quad \mu_j \in \{0, 1, 2, \ldots, p-1\}, \quad \mu_k \neq 0 \).

For \(x, w \in \mathbb{R}_+ \), let

\[
\chi(x, w) = \exp\left(\frac{2\pi i}{p} \sum_{j=1}^{\infty} (x_j w_{-j} + x_{-j} w_j)\right)
\]

(2.5)

where \(x_j \) and \(w_j \) are given by (2.1). We note that

\[
\chi\left(x, \frac{m}{p^{n-1}}\right) = \chi\left(\frac{m}{p^{n-1}}, x\right) = \omega_m\left(\frac{x}{p^{n-1}}\right), \quad \forall x \in [0, p^{n-1}), m \in \mathbb{Z}_+.
\]

The **Walsh-Fourier transform** of a function \(f \in L^2(\mathbb{R}_+) \) is defined by

\[
\hat{f}(w) = \int_{\mathbb{R}_+} f(x) \overline{\chi(x, w)} \, dw
\]

(2.6)
where \(\chi(x, w) \) is given by (2.5). The properties of Walsh-Fourier transform are quite similar to the classical Fourier transform [5, 11]. In particular, if \(f \in L^2(\mathbb{R}_+) \), then \(\tilde{f} \in L^2(\mathbb{R}_+) \) and

\[
\|f\|_{L^2(\mathbb{R}_+)} = \|\tilde{f}\|_{L^2(\mathbb{R}_+)}.
\]

(2.7)

If \(x, y, w \in \mathbb{R}_+ \) and \(x \oplus y \) is \(p \)-adic irrational, then

\[
\chi(x \oplus y, w) = \chi(x, w)\chi(y, w), \quad \chi(x \ominus y, w) = \chi(x, w)\chi(y, w),
\]

(2.8)

see Golubov et al. [5], Schipp et al. [11]. Thus for fixed \(x \) and \(w \), the equality (2.8) holds for all \(y \in \mathbb{R}_+ \) except for countably many. It was shown by Golubov et al. [5] that systems \(\{\chi(\alpha, \cdot)\}_{\alpha=0}^{\infty} \) and \(\{\chi(\cdot, \alpha)\}_{\alpha=0}^{\infty} \) are orthonormal basis in \(L^2(0, 1) \).

According to Schipp et al. [11] for any \(\phi \in L^2(\mathbb{R}_+) \), we have

\[
\int_{\mathbb{R}_+} \phi(t)\overline{\phi(t \ominus k)}dt = \int_{\mathbb{R}_+} \tilde{\phi}(w)\overline{\phi(w)}\chi(k, w)dw
\]

(2.9)

Let \(\{w\} \) be the fractional part of \(w \). For any \(\phi \in L^2(\mathbb{R}_+) \) and \(k \in \mathbb{Z}_+ \), we have \(\chi(k, w) = \chi(k, \{w\}) \). Therefore \(\chi(k, w + l) = \chi(k, w), l \in \mathbb{Z}_+ \). It follows from (2.9) that

\[
\int_{\mathbb{R}_+} \phi(t)\overline{\phi(t \ominus k)}dt = \sum_{l \in \mathbb{Z}_+} \int_{0}^{1} |\tilde{\phi}(w)|^2 \chi(k, w)dw
\]

\[
= \int_{0}^{1} (\sum_{l \in \mathbb{R}_+} |\tilde{\phi}(w + 1)|^2)\chi(k, w)dw
\]

Therefore, a necessary and sufficient condition for a system \(\{\phi(t \ominus k) | k \in \mathbb{Z}_+ \} \) to be orthonormal in \(L^2(\mathbb{R}_+) \) is

\[
\sum_{l \in \mathbb{R}_+} |\tilde{\phi}(w + 1)|^2 = 1 \quad a.e.
\]

(2.10)

Multiresolution \(p \)-analysis in \(L^2(\mathbb{R}_+) \) defined by Farkov [3] is as follows:

Definition 2.1. A multiresolution \(p \)-analysis on \(L^2(\mathbb{R}_+) \) is a nested sequence of closed subspaces \(V_j, j \in \mathbb{Z} \) of \(L^2(\mathbb{R}_+) \) such that following hold:

(a). \(V_j \subset V_{j+1}, j \in \mathbb{Z} \).

(b). \(\bigcup_j V_j \) is dense in \(L^2(\mathbb{R}_+) \) and \(\bigcap_j V_j = 0 \).
ORTHOGONAL VECTOR VALUED WAVELETS ON \mathbb{R}_+

(c). $f(t) \in V_j$ if and only if $f(pt) \in V_{j+1}$.

(d). $f(t) \in V_0 \Rightarrow f(t \oplus k) \in V_0$ for all $k \in \mathbb{Z}_+$.

(e). there exists a function called scaling function $\Phi \in V_0$ such that its translations $\Phi_k(t) = \Phi(t \ominus k), k \in \mathbb{Z}_+$, form an orthonormal basis for V_0.

The function ϕ is called the scaling function in $L^2(\mathbb{R}_+)$.

Farkov has given a general construction of compactly supported orthogonal p-wavelets in $L^2(\mathbb{R}_+)$ arising from scaling filters with p^n many terms. For all integer $p \geq 2$ these wavelets are identified with certain lacunary Walsh series on \mathbb{R}_+. In this new setting Farkov [3] has proved the extension of classical results concerning necessary and sufficient condition of wavelets associated with the classical multiresolution analysis.

The following theorem by Farkov [3] generalizes A. Cohen’s result, see Daubechies [2]:

Theorem 2.1. Let

$$m_0(w) = \sum_{\alpha=0}^{p^n-1} a_\alpha \chi(k, w)$$

be a polynomial satisfying the following conditions:

(i). $m_0(0) = 1$.

(ii). $\sum_{j=0}^{p^n-1} |m_0(sp^{-n} \oplus jp^{-1})|^2 = 1$ for $s = 0, 1, \ldots p^{n-1} - 1$.

(iii). There exists a W-compact set E such that $0 \in \text{int}(E)$, $\mu(E) = 1$, $E \equiv [0, 1)(mod \mathbb{Z}_+)$ and

$$\inf_{j \in \mathbb{N}} \inf_{w \in E} |m_0(p^{-j}w)| > 0$$

If the Walsh-Fourier transform if $\phi \in L^2(\mathbb{R}_+)$ can be written as

$$\tilde{\phi}(w) = \prod_{j=1}^{\infty} m_0(p^{-j}w),$$

then ϕ is scaling function in $L^2(\mathbb{R}_+)$.

3. Vector-Valued Multiresolution p-Analysis on \mathbb{R}_+

We use the following notations. Let \mathbb{C} be the set of all complex numbers, \mathbf{I}_N and \mathbf{O} represent $N \times N$ identity matrix and the zero matrix respectively.

$L^2(\mathbb{R}_+, \mathbb{C}^N)$ represents the set of square integrable vector-valued functions $f(t)$ on positive half line, \mathbb{R}_+ i.e.,

$$L^2(\mathbb{R}_+, \mathbb{C}^N) = \{ f(t) = (f_1(t), f_2(t), \ldots, f_N(t))^T : t \in \mathbb{R}_+, \quad f_v(t) \in L^2(\mathbb{R}_+), v = 1, 2, \ldots, N \}$$

where T denotes Transpose.

For $f \in L^2(\mathbb{R}_+, \mathbb{C}^N)$, $\|f\|_{L^2(\mathbb{R}_+, \mathbb{C}^N)}$ is the norm of the function f, i.e.,

$$\|f\|_{L^2(\mathbb{R}_+, \mathbb{C}^N)} = \sqrt{\sum_{v=1}^{N} \int_{\mathbb{R}_+} |f_v(t)|^2 dt}$$

and integration of f is given by

$$\int_{\mathbb{R}_+} f(t) dt = \left(\int_{\mathbb{R}_+} f_1(t) dt, \int_{\mathbb{R}_+} f_2(t) dt, \ldots, \int_{\mathbb{R}_+} f_N(t) dt \right)^T.$$

The Walsh-Fourier transform of $f(t)$ is defined by

$$\tilde{f}(w) = \int_{\mathbb{R}_+} f(t) \chi(k, w) dt = \left(\tilde{f}_1(w), \tilde{f}_2(w), \ldots, \tilde{f}_N(w) \right)^T. \quad (3.1)$$

For two vector valued functions $f, h \in L^2(\mathbb{R}_+, \mathbb{C}^N)$, their symbol inner product is defined by

$$\langle f, h \rangle_{L^2(\mathbb{R}_+, \mathbb{C}^N)} = \int_{\mathbb{R}_+} f(t) h(t)^* dt,$$

where * means complex conjugate and transpose. The inner product defined above is matrix valued (usually it is a scaler valued).

A sequence $\{ f_k(t) \}_{k \in \mathbb{Z}_+} \subset U \subseteq L^2(\mathbb{R}_+, \mathbb{C}^N)$ is called orthonormal set of U, if it satisfies

$$\langle f_k(t), f_n(t) \rangle = \delta_{k,n} \mathbf{I}_N, \quad (3.2)$$

where $\delta_{k,n}$ is the Kronecker delta such that $\delta_{k,n} = 1$ when $k = n$ and $\delta_{k,n} = 0$ when $k \neq n$.
Definition 3.1. We say that \(f(t) \in U \subseteq L^2(\mathbb{R}^+, \mathbb{C}^N) \) is an orthogonal vector-valued function in \(U \) if its translations \(\{ f(t \ominus k) \}_{k \in \mathbb{Z}^+} \) is an orthonormal set in \(U \), i.e.,
\[
\langle f(t \ominus k), f(t \ominus n) \rangle = \delta_{k,n} I_N, \quad k, n \in \mathbb{Z}^+.
\] (3.3)

Definition 3.2. A sequence \(\{ f_k(t) \}_{k \in \mathbb{Z}^+} \subset U \subseteq L^2(\mathbb{R}^+, \mathbb{C}^N) \) is called an orthonormal basis of \(U \) if it satisfies (3.2), and for any \(h(t) \in U \), there exists a unique sequence of \(N \times N \) constant matrices \(\{ A_k \}_{k \in \mathbb{Z}^+} \) such that
\[
h(t) = \sum_{k \in \mathbb{Z}^+} A_k f_k(t).
\]

The multiresolution analysis approach is one of the main approaches in the construction of wavelets. We introduce vector-valued multiresolution \(p \)-analysis on positive half line and give the definition for associated orthogonal vector valued wavelets.

Definition 3.3. A vector valued multiresolution \(p \)-analysis on \(L^2(\mathbb{R}^+, \mathbb{C}^N) \) is a nested sequence of closed subspaces \(V_j, \in \mathbb{Z} \) of \(L^2(\mathbb{R}^+, \mathbb{C}^N) \) such that following hold:

(a). \(V_j \subset V_{j+1}, j \in \mathbb{Z} \).

(b). \(\bigcup_j V_j \) is dense in \(L^2(\mathbb{R}^+, \mathbb{C}^N) \) and \(\bigcap_j V_j = \{ 0 \} \), where \(0 \) is the zero vector of \(L^2(\mathbb{R}^+, \mathbb{C}^N) \).

(c). \(f(t) \in V_j \) if and only if \(f(pt) \in V_{j+1} \).

(d). \(f(t) \in V_0 \Rightarrow f(t \oplus k) \in V_0 \) for all \(k \in \mathbb{Z}^+ \).

(e). there exists a function called scaling function \(\Phi \in V_0 \) such that its translations \(\Phi_k(t) = \Phi(t \ominus k), k \in \mathbb{Z}^+ \), form an orthonormal basis for \(V_0 \).

Now \(\Phi(t) \in V_0 \Rightarrow \Phi(pt) \in V_1 \), by (e)
\[
\delta_{0,k} I_N = \int_{\mathbb{R}^+} \Phi(t)\Phi(t \ominus k)dt
= \int_{\mathbb{R}^+} \sqrt{p} \Phi(pt)\sqrt{p} \Phi(pt \ominus k)dt.
\]
So \(\Phi_{1,k}(t) = \{ \sqrt{p} \Phi(pt \ominus k) \}_{k \in \mathbb{Z}^+} \) form an orthonormal basis for \(V_1 \).
Therefore, the space V_j is defined by
\[
V_j = \text{clos}_{L^2(\mathbb{R}_+, \mathbb{C}^N)}(\text{span}\{p^j \Phi(p^j t \ominus k)\}, k \in \mathbb{Z}_+), j \in \mathbb{Z}. \tag{3.4}
\]

Now $\Phi \in V_1$, there exists a sequence of $N \times N$ constant matrices $\{R_k\}_{k \in \mathbb{Z}^+}$ such that
\[
\Phi(t) = \sum_{k \in \mathbb{Z}^+} R_k \Phi(pt \ominus k), t \in \mathbb{R}_+. \tag{3.5}
\]
If the sequence $\{R_k\}_{k \in \mathbb{Z}^+}$ is finite, we say that $\Phi(t)$ is a compactly supported vector-valued function. By Walsh Fourier Transform, we have
\[
\tilde{\Phi}(w) = R(w/p)\tilde{\Phi}(w/p), \; w \in \mathbb{R}_+. \tag{3.6}
\]
where
\[
R(w) = \frac{1}{p} \sum_{k \in \mathbb{Z}^+} R_k \chi(k, w). \tag{3.7}
\]
Noting that $\chi(k, w + l) = \chi(k, w), k, l \in \mathbb{R}_+$, so $R(w)$ is 1-periodic function of w. By (3.6), we have
\[
\tilde{\Phi}(w) = R(w/p)R(w/p^2)\ldots \tilde{\Phi}(0) = \prod_{l=1}^{\infty} R(w/p^l)\tilde{\Phi}(0). \tag{3.8}
\]
Let $W_j, j \in \mathbb{Z}$ denote the orthocomplement subspace of V_j in V_{j+1} and there exists $p - 1$ vector valued functions $\Psi_m(t) \in L^2(\mathbb{R}_+, \mathbb{C}^N), m \in \Lambda$, where $\Lambda = \{1, 2, \ldots, p - 1\}$, such that their translations and dilations form Riesz basis of W_j, i.e.,
\[
W_j = \text{clos}_{L^2(\mathbb{R}_+, \mathbb{C}^N)}(\text{span}\{p^j \Psi_m(p^j t \ominus k)\}, m \in \Lambda, k \in \mathbb{Z}_+), j \in \mathbb{Z}. \tag{3.9}
\]
We say that $\{\Phi(t), \Psi_1(t), \Psi_2(t), \ldots, \Psi_{p-1}(t)\}$ is a vector-valued wavelet system. For each $m \in \Lambda$, $\Psi_m(t) \in W_0 \subset V_1$, there exist $p - 1$ sequences of $N \times N$ constant matrices $\{S_k^{(m)}\}_{k \in \mathbb{Z}^+}$ such that
\[
\Psi_m(t) = \sum_{k \in \mathbb{Z}^+} S_k^{(m)} \Phi(pt \ominus k), \; m \in \Lambda, t \in \mathbb{R}_+. \tag{3.10}
\]
By taking Walsh-Fourier Transform, the refinement equation (3.10) becomes
\[
\tilde{\Psi}_m(w) = S^{(m)}(w/p)\tilde{\Phi}(w/p), \; w \in \mathbb{R}_+, m \in \Lambda \tag{3.11}
\]
where

\[S^{(m)}(w) = \frac{1}{p} \sum_{k \in \mathbb{Z}^+} S^{(m)}_k \chi(k, w). \] (3.12)

If \(\Phi(t) \in L^2(\mathbb{R}^+, \mathbb{C}^N) \) is an orthogonal vector-valued scaling function, then it follows from (3.3) that

\[\langle \Phi(t), \Phi(t \oplus k) \rangle = \delta_{0,k} \mathbf{I}_N, \quad k \in \mathbb{Z}^+. \] (3.13)

We say \(p - 1 \) vector-valued functions \(\Psi_1(t), \Psi_2(t), \ldots, \Psi_{p-1}(t) \) are orthogonal vector-valued wavelet functions associated with the orthogonal vector-valued scaling function \(\Phi(t) \), if they satisfy

\[\langle \Psi_m(t), \Phi(t \oplus k) \rangle = 0, \quad m \in \Lambda, k \in \mathbb{Z}^+. \] (3.14)

and the family \(\{ \Psi_m(t \oplus k), m \in \Lambda \}_{k \in \mathbb{Z}^+} \) is an orthonormal basis of the subspace \(W_0 \). So we have

\[\langle \Psi_m(t), \Psi_n(t \oplus k) \rangle = \delta_{0,k} \delta_{m,n} \mathbf{I}_N, \quad m, n \in \Lambda, k \in \mathbb{Z}^+. \] (3.15)

The following lemma, which will be used in next section, gives a characterization in the frequency domain of an orthogonal vector-valued function \(f(t) \).

Lemma 3.1. Let \(f(t) \in L^2(\mathbb{R}^+, \mathbb{C}^N) \). Then \(f(t) \) is an orthogonal vector-valued function if and only if

\[\sum_{l \in \mathbb{Z}^+} \tilde{f}(w + l) \tilde{f}(w + l)^* = \mathbf{I}_N, w \in \mathbb{R}^+. \] (3.16)

Proof. Let \(f(t) = (f_1(t), f_2(t), \ldots, f_N(t))^T \in L^2(\mathbb{R}^+, \mathbb{C}^N) \),

\[\delta_{0,k} \mathbf{I}_N = \int_{\mathbb{R}^+} f(t) \overline{f(t \oplus k)^*} dt \]

\[= \begin{pmatrix} \int_{\mathbb{R}^+} f_1(t) f_1(t \oplus k) dt, & \int_{\mathbb{R}^+} f_1(t) f_2(t \oplus k) dt, & \cdots, & \int_{\mathbb{R}^+} f_1(t) f_N(t \oplus k) dt \\ \int_{\mathbb{R}^+} f_2(t) f_1(t \oplus k) dt, & \int_{\mathbb{R}^+} f_2(t) f_2(t \oplus k) dt, & \cdots, & \int_{\mathbb{R}^+} f_2(t) f_N(t \oplus k) dt \\ \vdots & \vdots & \ddots & \vdots \\ \int_{\mathbb{R}^+} f_N(t) f_1(t \oplus k) dt, & \int_{\mathbb{R}^+} f_N(t) f_2(t \oplus k) dt, & \cdots, & \int_{\mathbb{R}^+} f_N(t) f_N(t \oplus k) dt \end{pmatrix}. \]

By identity (2.9), we arrive at

\[\delta_{0,k} \mathbf{I}_N = \int_{\mathbb{R}^+} \tilde{f}(w) \overline{\tilde{f}(w)^*} \chi(k, w) dw \]
\[
\begin{align*}
&= \sum_{l \in \mathbb{Z}_+} \int_{l}^{l+1} \tilde{f}(w)\tilde{f}(w)^* \chi(k, w) dw \\
&= \int_{0}^{1} \sum_{l \in \mathbb{Z}_+} \tilde{f}(w + l)\tilde{f}(w + l)^* \chi(k, w) dw
\end{align*}
\]

So, \(f(t) \in L^2(\mathbb{R}_+, \mathbb{C}^N) \) is orthogonal \(\iff \sum_{l \in \mathbb{Z}_+} \tilde{f}(w + l)\tilde{f}(w + l)^* = \mathbb{I}_N \).

Lemma 3.2. If \(\Phi(t) \in L^2(\mathbb{R}_+, \mathbb{C}^N) \), defined by (3.5), is an orthogonal vector-valued scaling function, then \(\forall \ k \in \mathbb{Z}_+ \), we have

\[
\sum_{u \in \mathbb{Z}_+} R_u(R_{u\oplus pk})^* = p\delta_{0,k}\mathbb{I}_N.
\]

(3.17)

Proof. Now

\[
\delta_{0,k}\mathbb{I}_N = \langle \Phi(t \ominus k), \Phi(t) \rangle
\]

\[
= \sum_{u \in \mathbb{Z}_+} \sum_{v \in \mathbb{Z}_+} \int_{\mathbb{R}_+} R_u \Phi(pt \ominus pk \ominus u) \Phi(pt \ominus v) R_v^* dt
\]

\[
= p \sum_{u,v \in \mathbb{Z}_+} R_u \langle \Phi(t \ominus pk \ominus u), \Phi(t \ominus v) \rangle R_v^*
\]

\[
= p \sum_{u \in \mathbb{Z}_+} R_u(R_{u\oplus pk})^*.
\]

4. The Existence of Orthogonal Vector-Valued Wavelets on \(\mathbb{R}_+ \)

In this section, we consider the existence of compactly supported vector-valued wavelets on \(\mathbb{R}_+ \). We obtain the necessary and sufficient condition for the existence of vector valued orthogonal wavelets.

Theorem 4.1. Let \(\Phi(t) \in L^2(\mathbb{R}_+, \mathbb{C}^N) \) defined in (3.5) be an orthogonal vector-valued scaling function. Assume that \(\Psi_m(t) \in L^2(\mathbb{R}_+, \mathbb{C}^N), m \in \Lambda, \) and \(\mathcal{R}(w) \) and \(S^{(m)}(w) \) are defined by (3.7) and (3.12) respectively. Then \(\Psi_m(t), m \in \Lambda \) are orthogonal vector-valued wavelet functions associated with \(\Phi(t) \) if and only if

\[
\sum_{l=0}^{p-1} \mathcal{R} \left(\frac{w + l}{p} \right) S^{(m)} \left(\frac{w + l}{p} \right)^* = \mathbb{O}, \quad m \in \Lambda, w \in \mathbb{R}_+.
\]

(4.1)
\[
\sum_{l=0}^{p-1} \mathcal{S}^{(m)} \left(\frac{w+l}{p} \right) \mathcal{S}^{(n)} \left(\frac{w+l}{p} \right)^* = \mathbf{I}_N, \quad m, n \in \Lambda, w \in \mathbb{R}_+.
\]

Proof. Firstly, we prove the necessary part of the theorem.

By Lemma 3.1 and (3.14), we have

\[
\mathcal{O} = \sum_{l \in \mathbb{Z}_+} \tilde{\Phi}(w+l) \tilde{\Psi}_m(w+l)^*
\]

\[
= \sum_{l \in \mathbb{Z}_+} \mathcal{R} \left(\frac{w+l}{p} \right) \tilde{\Phi} \left(\frac{w+l}{p} \right) \tilde{\Phi} \left(\frac{w+l}{p} \right)^* \mathcal{S}^{(m)} \left(\frac{w+l}{p} \right)^*
\]

\[
= \sum_{l=pn} \mathcal{R} \left(\frac{w}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + n \right)^* \mathcal{S}^{(m)} \left(\frac{w}{p} + n \right)^*
\]

\[
+ \sum_{l=pn+1} \mathcal{R} \left(\frac{w}{p} + \frac{1}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + \frac{1}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + \frac{1}{p} + n \right)^* \mathcal{S}^{(m)} \left(\frac{w}{p} + \frac{1}{p} + n \right)^*
\]

\[
+ \ldots + \sum_{l=pn+(p-1)} \mathcal{R} \left(\frac{w}{p} + \frac{p-1}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + \frac{p-1}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + \frac{p-1}{p} + n \right)^* \mathcal{S}^{(m)} \left(\frac{w}{p} + \frac{p-1}{p} + n \right)^*
\]

\[
= \mathcal{R} \left(\frac{w}{p} \right) \left(\sum_{l=pn} \tilde{\Phi} \left(\frac{w}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + n \right)^* \mathcal{S}^{(m)} \left(\frac{w}{p} \right)^* \right)
\]

\[
+ \mathcal{R} \left(\frac{w}{p} + \frac{1}{p} \right) \left(\sum_{l=pn+1} \tilde{\Phi} \left(\frac{w}{p} + \frac{1}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + \frac{1}{p} + n \right)^* \mathcal{S}^{(m)} \left(\frac{w}{p} + \frac{1}{p} \right)^* \right)
\]

\[
+ \ldots + \mathcal{R} \left(\frac{w}{p} + \frac{p-1}{p} \right) \left(\sum_{l=pn+p-1} \tilde{\Phi} \left(\frac{w}{p} + \frac{p-1}{p} + n \right) \tilde{\Phi} \left(\frac{w}{p} + \frac{p-1}{p} + n \right)^* \mathcal{S}^{(m)} \left(\frac{w}{p} + \frac{p-1}{p} \right)^* \right)
\]

\[
= \sum_{l=0}^{p-1} \mathcal{R} \left(\frac{w+l}{p} \right) \mathcal{S}^{(m)} \left(\frac{w+l}{p} \right)^*.
\]

Again from (3.15) and Lemma 3.1, for \(m, n \in \Lambda \), we get

\[
\mathbf{I}_N = \sum_{l \in \mathbb{Z}_+} \tilde{\Psi}_m(w+l) \tilde{\Psi}_n(w+l)^*
\]
\[
\sum_{l \in \mathbb{Z}_+} S^{(m)} \left(\frac{w + l}{p} \right) \tilde{\Phi} \left(\frac{w + l}{p} \right) \tilde{\Phi} \left(\frac{w + l}{p} \right)^* S^{(m)} \left(\frac{w + l}{p} \right)^* = S^{(m)} \left(\frac{w}{p} \right) \left(\sum_{l=0}^{p-1} \text{R} \left(\frac{w + l}{p} \right) S^{(m)} \left(\frac{w + l}{p} \right)^* \right) = O,
\]
\[
\sum_{l \in \mathbb{Z}_+} \tilde{\Psi}_m(w + l) \tilde{\Psi}_n(w + l)^* = \sum_{l=0}^{p-1} S^{(m)} \left(\frac{w + l}{p} \right) S^{(n)} \left(\frac{w + l}{p} \right)^* = \text{I}_N.
\]

Conversely, suppose identities (4.1), (4.2) hold. From above, we have
\[
\sum_{l \in \mathbb{Z}_+} \tilde{\Phi}(w + l) \tilde{\Psi}_m(w + l)^* = \sum_{l=0}^{p-1} \text{R} \left(\frac{w + l}{p} \right) S^{(m)} \left(\frac{w + l}{p} \right)^* = O,
\]
\[
\sum_{l \in \mathbb{Z}_+} \tilde{\Psi}_m(w + l) \tilde{\Psi}_n(w + l)^* = \sum_{l=0}^{p-1} S^{(m)} \left(\frac{w + l}{p} \right) S^{(n)} \left(\frac{w + l}{p} \right)^* = \text{I}_N.
\]
Therefore
\[
\langle \Phi(t), \Psi_m(t \ominus k) \rangle = \sum_{l \in \mathbb{Z}_+} \int_{l}^{l+1} \tilde{\Phi}(w) \tilde{\Psi}_m(w)^* \chi(k, w)dw = \int_{0}^{1} \sum_{l \in \mathbb{Z}_+} \tilde{\Psi}(w + l) \tilde{\Psi}_m(w + l)^* \chi(k, w)dw = O, \quad m \in \Lambda, k \in \mathbb{Z}_+.
\]
Similarly, we have
\[
\langle \Psi_m(t), \Psi_n(t \ominus k) \rangle = \int_{0}^{1} \sum_{l \in \mathbb{Z}_+} \tilde{\Psi}_m(w + l) \tilde{\Psi}_n(w + l)^* \chi(k, w)dw
\]
Thus, $\Phi(t)$ and $\Psi_m(t), m \in \Lambda$ are mutually orthogonal, and \{\Psi_m(t), m \in \Lambda\} are a finite family of orthogonal vector-valued functions. This proves the orthogonality of \{\Psi_m(t \ominus k), m \in \Lambda\}_{k \in \mathbb{Z}^+}.

Finally, we shall prove the completeness of \{\Psi_m(t \ominus k), m \in \Lambda\}_{k \in \mathbb{Z}^+} in W_0. For any $f \in W_0 \subset V_1$, there exists a finite supported sequence of $N \times N$ constant matrices \{\mathcal{A}_k\}_{k \in \mathbb{Z}^+}$ such that

$$f = \sum_{k \in \mathbb{Z}^+} \mathcal{A}_k \Phi(pt \ominus k)$$

(4.3)

By taking Walsh-Fourier Transform, we have

$$\tilde{f}(w) = \mathcal{A}(w/p) \tilde{\Phi}(w/p)$$

(4.4)

where $\mathcal{A}(w) = \frac{1}{p} \sum_{k \in \mathbb{Z}^+} \mathcal{A}_k \chi(k, w)$. On the other hand, $f \in W_0$ and $f \notin V_0$ means

$$\int_{\mathbb{R}_+} f(t) \Phi(t \ominus k)^* dt = O, k \in \mathbb{Z}^+, \quad (4.5)$$

This is equivalent to

$$\sum_{l \in \mathbb{Z}^+} \tilde{f}(w + l) \tilde{\Phi}(w + l)^* = O.$$

(4.6)

According to (3.6), (4.4) and Lemma 3.1, we have

$$\sum_{l=0}^{p-1} \mathcal{A} \left(\frac{w + l}{p} \right) \mathcal{R} \left(\frac{w + l}{p} \right)^* = O, \quad w \in \mathbb{R}_+$$

(4.7)

Let $\mathcal{A}_1(w) = \left(\mathcal{A} \left(\frac{w}{p} \right), \mathcal{A} \left(\frac{w+1}{p} \right), \ldots, \mathcal{A} \left(\frac{w+p-1}{p} \right) \right)^*$, $\mathcal{R}_1(w) = \left(\mathcal{R} \left(\frac{w}{p} \right), \mathcal{R} \left(\frac{w+1}{p} \right), \ldots, \mathcal{R} \left(\frac{w+p-1}{p} \right) \right)^*$ and for $i = 1, 2, \ldots, p - 1$, we set $S_i(w) = \left(S^{(i)} \left(\frac{w}{p} \right), S^{(i)} \left(\frac{w+1}{p} \right), \ldots, S^{(i)} \left(\frac{w+p-1}{p} \right) \right)^*$. Then the identities (4.1) and (4.2) imply that, for any $w \in \mathbb{R}_+$, the column vectors in the $pN \times N$ matrix $\mathcal{R}_1(w)$ and column vectors in the $pN \times N$ $S_i(w)$ are orthogonal and all these vectors form an orthonormal basis for the pN-dimensional complex Euclidean space \mathbb{C}^{pN}. The identity (4.7) implies that the column vectors in the $pN \times N$ matrix $\mathcal{A}_1(w)$ and column vectors in the $pN \times N$ $\mathcal{R}_1(w)$ are orthogonal.
Thus, there exist \(p - 1 \) matrices \(\mathcal{L}^{(m)}(w), m \in \Lambda \) whose all entries are 1-periodic functions of \(w \) such that
\[
\mathcal{A}(w) = \sum_{m \in \Lambda} \mathcal{L}^{(m)}(w)S^{(m)}(w), \quad w \in \mathbb{R}_+.
\] (4.8)

Therefore, by (4.4)
\[
\tilde{f}(w) = \sum_{m \in \Lambda} \mathcal{L}^{(m)}(w/p)S^{(m)}(w/p)\Phi(w/p) = \sum_{m \in \Lambda} \mathcal{L}^{(m)}(w/p)\tilde{\Psi}_m(w). \quad (4.9)
\]

By the orthonormality of \(\{\Psi_m(t \ominus k), m \in \Lambda\}_{k \in \mathbb{Z}_+} \), we get
\[
\int_{\mathbb{R}_+} \tilde{f}(pw)\tilde{f}(pw)^*dw = \sum_{l \in \mathbb{Z}_+} \sum_{m \in \Lambda} \mathcal{L}^{(m)}(w)\tilde{\Psi}_m(pw)\tilde{\Psi}_m(pw)^*\mathcal{L}^{(m)}(w)^*dw
\]
\[
= \int_{0}^{1} \sum_{m \in \Lambda} \mathcal{L}^{(m)}(w)\mathcal{L}^{(m)}(w)^*dw.
\]

This proves that \(\mathcal{L}(w) \) has Walsh-Fourier series expansion. Let constant \(N \times N \) matrices \(\{Q_k^{(m)}\}_{k \in \mathbb{Z}_+}, m \in \Lambda \) be its Walsh-Fourier coefficients. Then
\[
f = \sum_{k \in \mathbb{Z}_+} \sum_{m \in \Lambda} Q_k^{(m)}\Psi_m(t \ominus k).
\]

This proves the completeness of \(\{\Psi_m(t \ominus k), m \in \Lambda\}_{k \in \mathbb{Z}_+} \) in \(W_0 \). \(\Box \) \(\Box \)

By Walsh-Fourier analysis and (3.7), (3.12), identities (4.1) and (4.2) are equivalent to, respectively,
\[
\sum_{v \in \mathbb{Z}_+} P_v(S_v^{(m)}S_v^{(n)}^{*}) = \mathbf{0}, \quad m \in \Lambda, k \in \mathbb{Z}_+ \quad (4.10)
\]
\[
\sum_{v \in \mathbb{Z}_+} S_v^{(m)}(S_v^{(n)}S_v^{(n)}^{*}) = p\delta_m,n\delta_0,kI_N, \quad m, n \in \Lambda, k \in \mathbb{Z}_+. \quad (4.11)
\]

Theorem 4.1 implies that a vector valued multiresolution \(p \)-analysis in \(L^2(\mathbb{R}_+, \mathbb{C}^N) \) gives us vector-valued scaling function \(\Phi \) and moreover associated \(p - 1 \) orthogonal vector valued wavelet functions \(\Psi_m(t), m \in \Lambda \) such that whose dilations and translations \(\Psi_{j,k,m}(t) = p^{j/2}\Psi_m(p^j t \ominus k), j \in \mathbb{Z}, k \in \mathbb{Z}_+, m \in \Lambda \) form an orthonormal basis for \(L^2(\mathbb{R}_+, \mathbb{C}^N) \). Therefore to construct a vector-valued wavelet functions, we only need to construct a vector-valued scaling function.
Theorem 4.2. Let
\[R(w) = \frac{1}{p} \sum_{k \in \mathbb{Z}_+} R(T_k(\chi(k, w))) \]
be a matrix valued scaling filter satisfying following conditions:
(a).
\[\sum_{l=0}^{p-1} R\left(\frac{w + l}{p}\right) R\left(\frac{w + l}{p}\right)^* = I_N. \] (4.12)
(b). There exists a constant \(C > 0 \) and integer \(M > 0 \) such that for \(w \in (0, p^M) \)
\[\| \prod_{l=1}^{M} R\left(\frac{w}{p^l}\right) \| < C \| \prod_{l=1}^{\infty} R\left(\frac{w}{p^l}\right) \| \] (4.13)
If \(\Phi \in L^2(\mathbb{R}_+, \mathbb{C}^N) \) such that \(\tilde{\Phi}(0)\tilde{\Phi}(0)^* = I_N \) and its Walsh-Fourier transform can be written as
\[\tilde{\Phi}(w) = \prod_{l=1}^{\infty} R\left(\frac{w}{p^l}\right) \tilde{\Phi}(0) \] (4.14)
then \(\Phi(t) \) is a vector valued scaling function for a vector valued multiresolution \(p \)-analysis in \(L^2(\mathbb{R}_+, \mathbb{C}^N) \). Thus, the corresponding \(\Psi_{j,k,m}(t) = p^j \tilde{\Psi}(p^j t \ominus k), j \in \mathbb{Z}, k \in \mathbb{Z}_+, m \in \Lambda \) form an orthonormal basis for \(L^2(\mathbb{R}_+, \mathbb{C}^N) \).

Proof. To prove Theorem 4.2, we only need to prove the orthonormality of \(\Phi(t \ominus k), k \in \mathbb{Z}_+ \). The rest is similar to Daubechies [2], Mallat [9] and Farkov [3].

Now
\[\int_{\mathbb{R}_+} \Phi(t)\Phi(t \ominus k) dt = \int_{\mathbb{R}_+} \tilde{\Phi}(w)\tilde{\Phi}(w)^* \chi(k, w) dw. \] (4.15)
For an integer \(M > 0 \), let
\[\mu_M(w) = \prod_{l=1}^{M} R\left(\frac{w}{p^l}\right) \tilde{\Phi}(0) \mathbf{1}_{(0,p^M)}(w). \] (4.16)
where \(\mathbf{1}_{(0,p^M)}(w) \) is the characteristic function of a subset \((0, p^M) \) of \(\mathbb{R}_+ \).

Now
\[\int_{\mathbb{R}_+} \mu_M(w)\mu_M(w)^* \chi(k, w) dw \]
\[\int_{0}^{p^{M}} \left(\mathcal{R} \left(\frac{w}{p} \right) \mathcal{R} \left(\frac{w}{p^{2}} \right) \ldots \mathcal{R} \left(\frac{w}{p^{M}} \right) \tilde{\Phi}(0) \right) \left(\tilde{\Phi}(0)^{*} \mathcal{R} \left(\frac{w}{p^{M}} \right)^{*} \mathcal{R} \left(\frac{w}{p^{M-1}} \right)^{*} \ldots \mathcal{R} \left(\frac{w}{p} \right)^{*} \right) \chi(k, w) \, dw \]

\[= p^{M} \int_{0}^{1} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right) \mathcal{R}(w) \mathcal{R}(w)^{*} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right)^{*} \chi(k, p^{M}w) \, dw \]

\[= p^{M} \int_{0}^{1} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right) \mathcal{R}(w) \mathcal{R}(w)^{*} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right)^{*} \chi(k, p^{M}w) \, dw \]

\[+ p^{M} \int_{0}^{\frac{1}{p}} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right) \mathcal{R}(w) \mathcal{R}(w)^{*} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right)^{*} \chi(k, p^{M}w) \, dw \]

\[+ \ldots \]

\[+ p^{M} \int_{\frac{1}{p}}^{1} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right) \mathcal{R}(w) \mathcal{R}(w)^{*} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right)^{*} \chi(k, p^{M}w) \, dw \]

\[= p^{M} \int_{0}^{1} \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right) \left(\sum_{l=0}^{p-1} \mathcal{R} \left(\frac{w}{p} + \frac{l}{p} \right) \mathcal{R} \left(\frac{w}{p} + \frac{l}{p} \right)^{*} \right) \left(\prod_{l=1}^{M-1} \mathcal{R}(p^{M-l}w) \right)^{*} \chi(k, p^{M}w) \, dw \]

Using (4.12) and \(\tilde{\Phi}(0)\tilde{\Phi}(0)^{*} = I_{N} \), we have

\[\int_{\mathbb{R}^{+}} \mu_{M}(w) \mu_{M}(w)^{*} \chi(k, w) \, dw \]

\[= \int_{0}^{p^{M-1}} \left(\prod_{l=1}^{M-1} \mathcal{R} \left(\frac{w}{p^{l}} \right) \right) \left(\prod_{l=1}^{M-1} \mathcal{R} \left(\frac{w}{p^{l}} \right) \right)^{*} \chi(k, w) \, dw \]

\[= \int_{\mathbb{R}^{+}} \mu_{M-1}(w) \mu_{M-1}(w)^{*} \chi(k, w) \, dw \]

\[= \ldots \]

\[= \int_{\mathbb{R}^{+}} \mu_{1}(w) \mu_{1}(w)^{*} \chi(k, w) \, dw \]

\[= \int_{0}^{1} I_{N} \chi(k, w) \, dw \]

\[= \delta_{0,k} I_{N}. \]

From (4.16), we get that \(\mu_{k}(w) \) converges to \(\Phi(w) \) pointwise. In view of (4.13),
we have
\[\| \mu_M(w)\mu_M(w)^* - \Phi(w)\Phi(w)^* \| \leq (C + 1)\| \Phi(w)\Phi(w)^* \|, \quad w \in \mathbb{R}_+. \]

Since all matrix norms are equivalent, there exists a constant \(C_1 > 0 \) such that
\[\| \mu_M\mu_M^* - \Phi\Phi^* \| \leq C_1 \int_{\mathbb{R}^+} \| \mu_M(w)\mu_M(w)^* - \Phi(w)\Phi(w)^* \|^2 dw. \]

By the Dominated convergence theorem, we get \(\| \mu_M\mu_M^* - \Phi\Phi^* \| \to 0 \) as \(M \to \infty \). Therefore
\[
\int_{\mathbb{R}^+} \bar{\Phi}(w)\Phi(w)^*\chi(k,w)dw = \lim_{M \to \infty} \int_{\mathbb{R}^+} \mu_M(w)\mu_M(w)^*\chi(k,w)dw = \delta_{0,k}I_N.
\]

This proves the orthonormality of \(\Phi(t \ominus k), k \in \mathbb{Z}_+ \). □ □

Acknowledgments

The authors are thankful to University Grants Commission and Council of Scientific and Industrial Research, New Delhi for providing the financial assistance for the preparation of the manuscript.

References

