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Abstract: The incidence chromatic number of a graph G, denoted by χi(G),
is the smallest positive integer of colors such that G has an incidence coloring.
We determine for all n except 2k2 − 3k + 1 cases for each k ≥ 3 that if n is
divisible by 2k+1, then χi(C

k
n) = 2k+1, otherwise χi(C

k
n) = 2k+2. Moreover,

we show that if n is divisible by 5, then χi(C
2
n) = 5. Otherwise χi(C

2
n) = 6.
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1. Introduction

Let G be a graph and let V (G), E(G), and ∆(G) denote a vertex set, an edge
set and the maximum degree of G, respectively. For vertices u and v, we write
uv for an edge joining u and v. Throughout this paper, all graphs are finite,
undirected, and simple. For any vertex v in V (G), we let NG(v) be the set of all
neighbors of v in G. The degree of a vertex v in a graph G, denoted by dG(v),
is equal to |NG(v)|. The order of a graph G is the cardinality |V (G)| and the
size of a graph G is the cardinality |E(G)|.

For vertices u and v in V (G), the distance between u and v, denoted by
distG(u, v), is the length of the shortest path jointing them. The square of a
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graph G, denoted by G2, is defined such that V (G2) = V (G) and two vertices
u and v are adjacent in G2 if and only if distG(u, v) ≤ 2. If 2 is replaced by k,
we call the obtained graph the k-th power of G.

In 1993, R. A. Brualdi and J. Q. Massey [2] introduced the concept of
incidence coloring. Let

I(G) = {(v, e) : v ∈ V (G), e ∈ E(G), v is incidenct with e}

be the set of incidences of a graph G. We say that two incidences (v, e) and
(w, f) are adjacent provided one of the following holds:

(i) v = w;
(ii) e = f ;
(iii) the edge vw = e or vw = f.

The configurations associated with (i)–(iii) are pictured in Figure 1.
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Figure 1: Cases of two incidences being adjacent.

An incidence coloring of a graph G is a mapping λ : I(G) → C, where C is
a color-set, such that adjacent incidences of G are assigned distinct colors, and
λ is a k-incidence coloring if |C| = k. The incidence chromatic number of G,
denoted by χi(G), is the minimum cardinality of C for which λ : I(G) → C is
an incidence coloring. For a vertex v, we use I(v) to denote the set of incidences
of the form (v, vw) and use A(v) to denote the set of incidences of the form
(w,wv) respectively. Obviously, for each edge xy of G, there are two incidences
with respect to xy which are (x, xy) and (y, yx). For an incidence (x, xy), the
edge xy is the edge with respect to the incidence (x, xy). From the definition of
incidence coloring, the simple lower bound of the incidence chromatic number
of any graph G with at least one edge is ∆(G) + 1, that is χi(G) ≥ ∆(G) + 1.

R. A. Brualdi and J. Q. Massey [2] proved that χi(G) ≤ 2∆(G) for every
graph G and they posed the incidence coloring conjecture (ICC), which states
that for every graph G, χi(G) ≤ ∆(G) + 2. In 1997, B. Guiduli [6] showed that
the concept of incidence coloring is a special case of directed star arboricity, in-
troduced by I. Algor and N. Alon [1] and pointed out that the ICC false by using
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Paley graphs of order p with p ≡ 1(mod 4). Following the analysis in [1], they
showed that χi(G) ≥ ∆(G)+Ω(log ∆(G)), where Ω = (1/8)−o(1). According to
a tight upper bound for directed star arboricity, they gave an upper bound for
the incidence chromatic number, namely χi(G) ≤ ∆(G) +O(log ∆(G)). R. A.
Brualdi and J. Q. Massey [2] determined the incidence chromatic numbers of
trees, complete graphs and complete bipartite graphs which was corrected some
parts of the proof by W. C. Shiu and P. K. Sun [9]. In 1998, D. L. Chen, X. K.
Liu and S. D. Wang [3] determined the incidence chromatic numbers of paths,
cycles, fans, wheels, adding-edge wheels and complete multipartite graphs. In
2000, X. D. Chen, D. L. Chen, and S. D. Wang [4] determined the incidence
chromatic number of Pn ×Pm and generalized complete graphs. In 2002, S. D.
Wang, D. L. Chen, and S. C. Pang [10] determined the incidence chromatic
number of Halin graphs and outerplanar graphs with ∆(G) ≤ 4. In the same
year, W. C. Shiu, P. C. B. Lam, and D. L. Chen [8] determined the incidence
chromatic number of some cubic graphs. In 2004, M. H. Dolama, E. Sopena,
and X. Zhu [5] determined the incidence chromatic number of K4-minor free
graphs and also gave the upper bound for k-degenerated graphs and planar
graphs. In 2008, D. Li and M. Liu [7] determined the incidence chromatic num-
ber of the k-th power of paths, the squre of trees, which are min{n, 2k+1} and
∆(T 2) + 1 respectively, where n is the order of a graph G. And they also gave
an upper bound for the incidence chromatic number of the square of a Halin
graph.

In this paper, we determine for all n except 2k2−3k+1 cases for each k ≥ 3
that if n is divisible by 2k+1, then χi(C

k
n) = 2k+1, otherwise χi(C

k
n) = 2k+2.

Moreover, we show that if n is divisible by 5, then χi(C
2
n) = 5. Otherwise

χi(C
2
n) = 6.

2. Power of Cycles

Let Cn be a cycle with n vertices and V (Cn) = {v1, v2, . . . , vn} in the usual
arrangement. It is known that if n is divisible by 3, then χi(Cn) = 3, otherwise
χi(Cn) = 4 (see [3]). If 2k + 1 ≥ n, then Ck

n = Kn. R. A. Brualdi and J. Q.
Massey [2] showed that χi(Kn) = n. Thus χi(C

k
n) = n if 2k + 1 ≥ n. So we

consider only the case n > 2k+1. From now on, we let n = (2k+1)t+ r where
r and t are integers such that t ≥ 1 and 0 ≤ r ≤ 2k for Ck

n.

Observation 1. Let G be a ∆-regular graph. If G has a (∆+1)-incidence
coloring λ, then λ(A(v)) is a singleton for each vertex v.
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Proof. Note that λ(v, vu) and λ(v, vw) must be distinct for each u 6= w.
Thus λ(I(v)) is a set of cardinality ∆. Observe that λ(A(v)) must be disjoint
from λ(I(v)). But λ is a (∆+1)-incidence coloring, hence λ(A(v)) is a singleton.

Observation 2. Let λ be an incidence labeling of Gk such that λ(A(v)) is
a singleton for each vertex v. The incidence labeling λ is an incidence coloring

of Gk if and only if distG(u, v) ≥ 2k + 1 for each distinct vertices u and v in

which λ(A(u)) = λ(A(v)).

Proof. Let λ be an incidence labeling of Gk such that λ(A(v)) is a singleton
for each vertex v.

Necessity. Assume that λ is an incidence coloring of Gk. Consider distinct
vertices u and v in which λ(A(u)) = λ(A(v)). Suppose distG(u, v) ≤ 2k. Then
uv is an edge or there is a vertex w such that distG(u,w) ≤ k and distG(v,w) ≤
k in G. Thus a pair of (u, uv) and (v, vu) or a pair of (u, uw) and (v, vw) in Gk

have the same color. This contradiction completes the proof.
Sufficiency. Suppose λ(A(u)) = λ(A(v)) implies distG(u, v) ≥ 2k+1. Note

that if the distinct incidences (u, e) and (v, f) are adjacent in Gk, then u = v
or uv ∈ E((Gk)2) = E(G2k) i.e., distG(u, v) ≤ 2k. So λ(u, e) 6= λ(v, f) by
assumption. Thus λ is an incidence coloring of Gk.

Lemma 3. In a graph Ck
n, χi(C

k
n) = 2k+ 1 if and only if n is divisible by

2k + 1.

Proof. Necessity. Let n = (2k + 1)t + r such that t ≥ 1 and 1 ≤ r ≤ 2k.
Suppose there is a (2k+1)-incidence coloring λ. By Observation 1, λ(A(vi)) is a
singleton for 1 ≤ i ≤ n. By Observation 2, λ(A(v1)), λ(A(v2)), . . . , λ(A(v2k+1))
are distinct. Again, λ(A(v2)), . . . , λ(A(v2k+1)), λ(A(v2k+2)) are distinct. Thus
λ(A(v1)) = λ(A(v2k+2)). Similarly, we have λ(A(vi)) = λ(A(v(2k+1)j+i) for each
i and j. Then λ(A(vn)) = r. But distG(vr, vn) < 2k+1. By Observation 2, λ is
not a (2k + 1)-incidence coloring, a contradiction.

Sufficiency. Let λ(A(vi)) = j where i ≡ j mod(2k+1) and j ∈ {1, 2, . . . , 2k+
1}. By Observation 2, λ is a (2k + 1)-incidence coloring.

Lemma 4. If 1 ≤ r ≤ t, then χi(C
k
n) = 2k + 2.

Proof. By Lemma 3, χi(C
k
n) ≥ 2k + 2. Define λ(A(v1)), λ(A(v2)), . . . ,

λ(A(v(2k+2)r)) to be 1, 2, . . . , 2k + 2, . . . , 1, 2, . . . , 2k + 2 and λ(A(v(2k+2)r+1)),
. . . , λ(A(vn)) to be 1, 2, . . . , 2k + 1, . . . , 1, 2, . . . , 2k + 1. By Observation 2, λ is
a (2k + 2)-incidence coloring.

For convenience, we write A− (x, xy) for a set obtained by deleting (x, xy)
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from A instead of A− {(x, xy)}.

Lemma 5. If r = 2k, then χi(C
k
n) = 2k + 2.

Proof. By Lemma 3, χi(C
k
n) ≥ 2k + 2. Define λ(A(v2k+1)), . . . , λ(A(vn)) to

be 1, 2, . . . , 2k + 1, . . . , 1, 2, . . . , 2k + 1. Define λ(A(vi) − (vk+i, vivk+i)) = i for
i = 1, . . . , 2k. Other remaining incidences are assigned 2k + 2. By Observation
2, this labeling has no conflict except possibly at incidences involving vi for
i = 1, . . . , 2k. We can check for each i to verify that λ is a (2k + 2)-incidence
coloring.

Lemma 6. If n = 5t+ 3, then χi(C
2
n) = 6.

Proof. By Lemma 3, χi(C
2
n) ≥ 6. Define λ(A(v4)), . . . , λ(A(vn)) to be

1, 2, . . . , 5, . . . , 1, 2, . . . , 5. Define λ(vn−1, vn−1v1) = λ(vn, vnv1) = 1, λ(vn, vnv2) =
λ(v1, v1v2) = 2, λ(v2, v2v1) = λ(v3, v3v1) = 3, λ(v3, v3v2) = λ(v2, v2v4) = 4,
λ(v4, v4v3) = λ(v5, v5v3) = 5, and λ(v1, v1v3) = λ(v2, v2v3) = 6. By Observa-
tion 2, this labeling has no conflict except possibly at incidences involving vi
for i = 1, 2, or 3. We can check for each i to verify that λ is a 6-incidence
coloring.

Lemma 7. In a graph C7
2 , χi(C

2
7 ) = 6.

Proof. Define λ(A(v1)) = 1, λ(A(v2)) = λ(v5, v5v6) = 2, λ(A(v4)) =
λ(v1, v1v7) = 3, λ(A(v5)) = 4, λ(v1, v1v3) = λ(v4, v4v3) = λ(A(v7)−(v1, v1v7)) =
5, and λ(v2, v2v3) = λ(v5, v5v3) = λ(A(v6)− (v5, v5v6)) = 6.

It is straightforward to check that λ is a 6-incidence coloring.

Theorem 8. If n is divisible by 5, then χi(C
2
n) = 5. Otherwise χi(C

2
n) = 6.

Proof. This result is obtained by Lemmas 3 – 7.

Remark. By using Lemmas 3, 4, and 5, we can determine for all n except
2k2 − 3k+1 cases for each k ≥ 3 that if n is divisible by 2k+1, then χi(C

k
n) =

2k + 1, otherwise χi(C
k
n) = 2k + 2. For example, we can determine χi(C

3
n) for

all n except n = 9, 10, 11, 12, 17, 18, 19, 25, 26, and 33.

Acknowledgments

The first author was supported by Research and Academic Affairs Promotion
Fund, Faculty of Science, Khon Kaen University, Fiscal year 2012.



148 K. Nakprasit, K. Nakprasit

References

[1] I. Algor, N. Alon, The star arboricity of graphs, Discrete Math., 75, No-s:
1-3 (1989), 11-22.

[2] R.A. Brualdi, J.Q. Massey, Incidence and strong edge colorings of graphs,
Discrete Math., 122 (1993), 51-58.

[3] D.L. Chen, X.K. Liu, S.D. Wang, The incidence chromatic number and
the incidence coloring conjecture of graphs, Mathematics in Economics,
15, No. 3 (1998), 47-51.

[4] X.D. Chen, D.L. Chen, S.D. Wang, On incidence chromatic number of
Pn × Pm, Mathematics in Economics, 17, No. 3 (2000), 45-50.

[5] M.H. Dolama, E. Sopena, X. Zhu, Incidence coloring of k-degenerated
graphs, Discrete Math., 283 (2004), 121-128.

[6] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete

Math., 163 (1997), 275-278.

[7] D. Li, M. Liu, Incidence coloring of the squares of some graphs, Discrete

Math., 308 (2008), 6569-6574.

[8] W.C. Shiu, P.C.B. Lam, D.L. Chen, On incidence coloring for some cubic
graphs, Discrete Math., 252 (2002), 259-266.

[9] W.C. Shiu, P.K. Sun, Invalid proofs on incidence coloring, Discrete Math.,
308 (2008), 6575-6580.

[10] S.D. Wang, D.L. Chen, S.C. Pang, The incidence coloring number of Halin
graphs and outerplanar graphs, Discrete Math., 256 (2002), 397-405.


