A VARIATIONAL PRINCIPLE AND ITS APPLICATION

A.G. Ramm
Department of Mathematics
Kansas State University
Manhattan, KS 66506, USA

Abstract: Assume that A is a bounded selfadjoint operator in a Hilbert space H. Then, the variational principle

$$\max_v \frac{|(Au, v)|^2}{(Av, v)} = (Au, u) \quad (*)$$

holds if and only if $A \geq 0$, that is, if $(Av, v) \geq 0$ for all $v \in H$. We define the left-hand side in (*) to be zero if $(Av, v) = 0$. As an application of this principle it is proved that

$$C = \max_{\sigma \in L^2(S)} \frac{\left| \int_S \sigma(t) dt \right|^2}{\int_S \int_S \frac{\sigma(t)\sigma(s) ds dt}{4\pi |s-t|}}, \quad (***)$$

where $L^2(S)$ is the L^2-space of real-valued functions on the connected surface S of a bounded domain $D \in \mathbb{R}^3$, and C is the electrical capacitance of a perfect conductor D.

The classical Gauss’ principle for electrical capacitance is an immediate consequence of (*).

AMS Subject Classification: 35J05, 47A50
Key Words: variational principle, capacitance

1. Introduction

In many applications a physical quantity of interest can be expressed as a quadratic form. For example, consider electrical charge distributed on the surface of a perfect conductor with density $\sigma(t)$. If the conductor is charged to a
potential \(u = 1 \), then the equation for \(\sigma(t) \) is

\[
A\sigma := \int_S \frac{\sigma(t)dt}{4\pi r_{st}} = 1, \quad s \in S, \quad r_{st} := |s - t|,
\]

where \(dt \) is the element of the surface area, \(S \) is the surface of the conductor \(D \), and \(D \in \mathbb{R}^3 \) is a bounded domain with a connected smooth boundary \(S \). The total charge on \(S \) is \(Q = \int_S \sigma(t)dt \). The physical quantity of interest is electrical capacitance \(C \) of the conductor \(D \). Since \(Q = Cu \) and \(u = 1 \) (see equation (1)), it follows that

\[
C = \int_S \sigma(t)dt = (A\sigma, \sigma),
\]

where \((f, g) := \int_S f\overline{g}dt \) is the inner product in the Hilbert space \(H = L^2(S) \), and the overbar stands for complex conjugate.

Let us introduce a general theory. Let \(A = A^* \) be a linear selfadjoint bounded operator in a Hilbert space \(H \). Consider an equation \(Au = f \).

We are interested in a quantity \((Au, u) \) and want to find a variational principle that allows one to calculate and estimate this quantity. Let us write \(A \geq 0 \) if and only if \((Av, v) \geq 0 \) for all \(v \), and say in this case that \(A \) is non-negative. If \((Av, v) > 0 \) for all \(v \neq 0 \), we write \(A > 0 \) and say that \(A \) is positive.

The following variational principle is our main abstract result.

Theorem 1.1. Let \(A = A^* \) be a linear bounded selfadjoint operator. Formula

\[
(Au, u) = \max_{v \in H} \frac{|(Av, u)|^2}{(Av, v)}
\]

holds if and only if \(A \geq 0 \).

Remark 1. We define the right-hand side in (2) to be zero if \((Av, v) = 0 \).

Theorem 1 can be proved also for unbounded selfadjoint operators \(A \). In this case maximization is taken over \(v \in D(A) \), where \(D(A) \) is the domain of \(A \), a linear dense subset of \(H \).

In Section 2, Theorem 1.1 is proved. Let us illustrate this theorem by an example.

Example 1. Let \(A \) be defined in (1). In Section 2, we prove the following lemma.

Lemma 1.2. The operator \(A \) in equation (1) is positive in \(H = L^2(S) \).
From Theorem 1.1, Lemma 1.2, and equation (1) it follows that the electrical capacitance C can be calculated by the following variational principle:

$$C = \max_{v \in L^2(S)} \frac{|\int_S v(t) dt|^2}{\int_S \int_S \frac{v(t)v(s)dsdt}{4\pi r_{st}}}.$$ \hspace{1cm} (3)

This variational principle for electrical capacitance is an application of the abstract variational principle formulated in Theorem 1.

Formula (3) can be rewritten as

$$C^{-1} = \min_{v \in L^2(S)} \frac{\int_S \int_S \frac{v(t)v(s)dsdt}{4\pi r_{st}}}{|\int_S v(t) dt|^2}.$$ \hspace{1cm} (4)

In particular, setting $v = 1$ in (3), one gets

$$C \geq \frac{4\pi |S|^2}{J}, \quad J := \int_S \int_S \frac{dsdt}{r_{st}},$$ \hspace{1cm} (5)

where $|S|$ is the surface area of S.

In [3] the following approximate formula for the capacitance is derived:

$$C^{(0)} = \frac{4\pi |S|^2}{J}.$$

This formula is zero-th approximation of an iterative process for finding $\sigma(t)$, the equilibrium charge distribution on the surface S of a perfect conductor charged to the potential $u = 1$.

Formula (4) yields a well-known Gauss’ principle (see [2]), which says that if the total charge $Q = \int_S v(t) dt$ is distributed on the surface S of a perfect conductor with a density $v(t)$ and $u(s)$ is the corresponding distribution of the potential on S, then the minimal value of the functional

$$Q^{-2} \int_S \int_S \frac{v(t)v(s)dsdt}{4\pi r_{st}} = \min$$ \hspace{1cm} (6)

is equal to C^{-1}, where C is the electrical capacitance of the conductor, and this minimal value is attained at $v(t) = \sigma(t)$, where $\sigma(t)$ solves equation (1).
2. Proofs

Proof of Theorem 1.1. The sufficiency of the condition $A \geq 0$ for the validity of (2) is clear: if $A = A^* \geq 0$, then the quadratic form $\langle u, u \rangle := (Au, u)$ is non-negative and the standard argument yields the Cauchy inequality

$$|(Au, v)|^2 \leq (Au, u)(Av, v).$$

The equality sign in (7) is attained if and only if u and v are linearly dependent. Dividing (7) by (Av, v), one obtains (2), and the maximum in (2) is attained if $v = \lambda u$, $\lambda = \text{const}$.

Let us prove the necessity of the condition $A \geq 0$ for (2) to hold. Let us assume that there exist z and w such that $\langle Az, z \rangle > 0$ and $\langle Aw, w \rangle < 0$, and prove that then (2) cannot hold.

Note that if $\langle Av, v \rangle \leq 0$ for all v, then (2) cannot hold. Indeed, if $\langle Av, v \rangle \leq 0$ for all v, then (2) implies $|(Bu, v)|^2 \geq (Bu, u)(Bv, v)$, where $B = -A \geq 0$. This is a contradiction to the Cauchy inequality. This contradiction proves that $\langle Av, v \rangle \leq 0$ for all v cannot hold if (2) holds.

Let us continue the proof of necessity. Take $v = \lambda z + w$, where λ is an arbitrary real number. Then, (2) yields

$$\frac{|(Au, \lambda z + w)|^2}{q(\lambda)} \leq (Au, u),$$

where

$$q(\lambda) := a\lambda^2 + 2b\lambda + c, \quad a := \langle Az, z \rangle > 0, \quad c = \langle Aw, w \rangle < 0,$$

and $b := \text{Re}(Az, w)$. The polynomial $q(\lambda)$ has two real roots $\lambda_1 < 0$ and $\lambda_2 > 0$, $q^{-1}(\lambda) \to +\infty$ if $\lambda \to \lambda_1 - 0$ or if $\lambda \to \lambda_2 + 0$. The quadratic polynomial $p(\lambda) := |(Au, \lambda z + w)|^2$ has also two roots, and by (2), the ratio $\frac{p(\lambda)}{q(\lambda)}$ is bounded when $\lambda \to \lambda_1 - 0$ and $\lambda \to \lambda_2 + 0$. Therefore, one concludes that $p(\lambda)$ has the same roots as $q(\lambda)$, that is, λ_1 and λ_2 are roots of $p(\lambda)$.

Since $\lambda_1 \lambda_2 < 0$ and

$$p(\lambda) = |(Au, z)|^2 \lambda^2 + 2\lambda \text{Re}(Au, z)(Au, w) + |(Au, w)|^2,$$

it follows that

$$\frac{|(Au, w)|^2}{|(Au, z)|^2} < 0.$$

This is a contradiction which proves that there are no elements z and w such that $\langle Az, z \rangle > 0$ and $\langle Aw, w \rangle < 0$.

Theorem 1.1 is proved. □

Proof of Lemma 1.2. It is known that

\[
F\left(\frac{1}{|x|}\right) := \int_{\mathbb{R}^3} \frac{e^{-i\zeta \cdot x}}{|x|} dx = \frac{4\pi}{|\zeta|^2} > 0,
\]

where the Fourier transform \(F\) is understood in the sense of distributions (see, e.g., [1]). Therefore,

\[
(A\sigma, \sigma) = \int_S \int_S \frac{\sigma(t)\sigma(s)}{4\pi|s-t|} ds dt = \int_{\mathbb{R}^3} \frac{|F\sigma(\zeta)|^2}{|\zeta|^2} d\zeta \geq 0,
\]

which proves Lemma 1.2. □

In (12), \(F\sigma(\zeta)\) is the Fourier transform of the distribution \(\sigma(t)\) with support on the surface \(S\). There are many results about the rate of decay of the Fourier transform of a function (measure) supported on a surface. For example, if the Gaussian curvature of the surface \(S\) is strictly positive, then (see [4])

\[
F\sigma(\zeta) := \int_S \sigma(t)e^{-i\zeta \cdot t} dt = O\left(\frac{1}{|\zeta|}\right), \quad |\zeta| \to \infty, \quad \zeta \in \mathbb{R}^3,
\]

provided that \(\sigma(t)\) is sufficiently smooth.

References

