ON NORMALIZED SEMI PARALLEL

T'-VECTOR FIELD IN FINSLER SPACE

Bankteshwar Tiwari

DST-CIMS, Faculty of Science
Banaras Hindu University
Varanasi, 221005, INDIA

Abstract: The semi-parallel vector field in Riemannian geometry has been introduced by Fulton [3], whereas in Finsler geometry by Singh and Prasad [9], for instance, concurrent vector fields and concircular vector fields are semi parallel. The purpose of the present paper is to introduce Normalized Semi Parallel T'-vector field in Finsler space and to study the properties of some special Finsler spaces with this vector field. For instance, there in no such vector field in non-Riemannian C-reducible Finsler space. The notations and terminologies are referred to the monograph [5].

AMS Subject Classification: 53B40, 53C60
Key Words: Finsler space, semi parallelism, normalized semi parallel vector field, T'-tensor, C-reducible Finsler space

1. Introduction

Let M^n be an $n(\geq 2)$ dimensional Finsler space endowed with a fundamental function $L = L(x, y)$, where $x = (x^i)$ is a point and $y = (y^i)$ is a supporting element of M^n. The metric tensor g_{ij}, angular metric tensor h_{ij} and (h)hvtorsion tensor C_{ijk} of M^n are respectively given by
\[g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \partial y^j}, \quad h_{ij} = L \frac{\partial^2 L}{\partial y^i \partial y^j} \text{ and } C_{ijk} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}. \]

So that in terms of normalized supporting element \(l_i = \frac{g_{ij} y^j}{L} \), the angular metric tensor can be written as \(h_{ij} = g_{ij} - l_i l_j \). The T-tensor \(T_{ijkh} \) of \(M^n \) is defined as \[T_{ijkh} = LC_{ijk}|_h + C_{ijk} l_h + C_{jkh} l_i + C_{khil} l_j + C_{hijl} k. \] (1.1)

where the symbol \(|\) means the v-covariant derivative with respect to Cartan connection \(\Gamma \) of \(M^n \). Transvection of (1.1) by the reciprocal metric tensor \(g^{kh} \) of \(g_{kh} \) gives \[T_{ij} = LC_{i|j} + C_{il} j + C_{jl} i, \] (1.2)

where \(T_{ij}(= g^{kh} T_{ijkh}) \) and \(C_i (= g^{jk} C_{ijk}) \) are called \(T' \)-tensor and the torsion vector of \(M^n \) respectively. If the \(T' \)-tensor \(T_{ij} \) of \(M^n \) vanishes, then \(M^n \) is called Finsler space with \(T' \)-condition. For instance, a \(C^v \)-reducible Finsler space [7] satisfies \(T' \)-condition as well as \(T' \)-condition. If the \(T' \)-tensor \(T_{il} \) of a Finsler space \(M^n \) is written \(T_{ij} = \alpha h_{ij} \), then \(M^n \) is called a Finsler space with semi-\(T' \)-condition [1] and if the \(T' \)-tensor \(T_{ij} \) of a Finsler space \(M^n \) is written as \(T_{ij} = \alpha' h_{ij} - \left(\frac{\beta}{\partial x^i} \right) C_i C_j \), then \(M^n \) is called a Finsler space with quasi-\(T' \)-condition [2]. For instance, a C-reducible Finsler space satisfies semi-\(T' \)-condition and a semi-C-reducible Finsler space with constant coefficient satisfies quasi-\(T' \)-condition. The semi parallelism of vector fields in Finsler spaces has been introduced by Singh and Prasad [9] as follows.

Definition. A normalised vector field \(X_i \) in a Finsler space \(M^n \) is said to be semi parallel if:

(a) \(X_i \) is function of coordinate only,

(b) \(C_{ij} X_i = 0 \), and

(c) \(X_{ij} = \rho (g_{ij} - X_i X_j) \), where the symbol \(|\) means the h-covariant derivative with respect to Cartan connection \(\Gamma \) of \(M^n \).

Further Izumi [10] introduced the h-vector field \(v_i \) which is v-covariant constant with respect to \(\Gamma \) and satisfying \(LC_{ij} X_i = \sigma h_{jk} \). Pandey and Diwedi [8] studied normalized semi parallel Ch-vector field \((X_i) \) satisfying the condition

(a) \(X_i|_j = 0 \), (b) \(LC_{jk} X_i = \alpha h_{jk} + \beta L^2 C_j C_k \) and (c) \(X_{ij} = \rho (g_{ij} - X_i X_j) \).

The purpose of the present paper is to introduce normalized semi parallel \(T' \)-vector field and to study the properties of some special Finsler spaces admitting this field.
Definition 1.1. A normalized vector field X_i in a Finsler space is said to be semi parallel T'-vector field if:

(a) $X_i|_j = 0$,
(b) $LC^i_{jk}X_i = T_{jk}$, and
(c) $X_{ij} = \rho(x)(g_{ij} - X_iX_j)$.

Throughout the paper the vector field X_i is assumed to be positively homogeneous of degree zero in y^i.

Remark. A normalized semi parallel T'-vector field X_i, in a Finsler space with T or T'-condition, is a normalized semi parallel vector field. A normalized semi parallel T'-vector field X_i, in a Finsler space with semi-T'-condition and quasi-T'-condition, is normalized semi parallel h-vector field and Ch-vector field respectively.

Proposition 1.1. There is no normalized semi parallel T'-vector field parallel or perpendicular to line element l^i.

Proof. If possible let $X_i = \lambda(x, y)y^i$, where λ is homogenous of degree (-1) with respect to y. Differentiating v-covariantly with respect to y^j and using condition (a) of definition (1.1), we have $y^i\frac{\partial \lambda}{\partial y^j} + \lambda \delta^i_j = 0$. Summing with respect to i and j using homogenity of λ, we have $(n - 1)\lambda = 0$, i.e., $\lambda = 0$, which is a contradiction, because $X^i \neq 0$.

Further if we assume $X_iy^i = 0$, then differentiating v-covariantly with respect to y^j and using condition (a) of definition (1.1), we have $X_i = 0$, which is again a contradiction.

Proposition 1.2. The scalar ρ in definition (1.1) is function of position only.

Proof. If possible let $\rho = \rho(x, y)$. Consider the second Ricci identity [5], for normalized semi parallel T'-vector field X_i:

$$X_{i|j|k} - X_i|_{k|j} = -X_hP^h_{ijk} - X_i|_hC^h_{jk} + X_i|_hF^h_{jk}$$

(1.3)

Using (a) and (c) of definition (1.1) we have

$$\frac{\partial \rho}{\partial y^k}(g_{ij} - X_iX_j) = -X_hP^h_{ijk} - \rho(C_{ijk} - X_iL^{-1}T_{jk})$$

(1.4)

Contracting by y^j and using $P^h_{ijk}y^j = 0$, $T_{jk}y^j = 0$ and $C_{ijk}y^j = 0$, we have $\frac{\partial \rho}{\partial y^k}(y_i - X_0X_i) = 0$. Since $(y_i - X_0X_i) = 0$, contradicts the proposition (1.1), we have $\frac{\partial \rho}{\partial y^k} = 0$, that is, ρ is function of position only.
Theorem 1.1. If \(X_i \) be a normalized semi parallel \(T' \)-vector field in a Finsler space \(F^n \) then:

(a) \(X_h S_{ijk}^h = 0 \),

(b) \(X_h P_{ijk}^h = -\rho (C_{ijk} - X_i L^{-1} T_{jk}) \), and

(c) \(X_h R_{ijk}^h = -g_{ij} (\rho_k + \rho^2 X_k) + g_{ik} (\rho_j + \rho^2 X_j) + X_i (\rho_k X_j - \rho_j X_k) \), where \(\rho_k \) stands for \(\rho|_k \).

Proof. Consider the third Ricci identity [5]

\[
X_i |j|k - X_i |k|j = -X_h S_{ijk}^h
\]

Using condition (a) of definition (1.1), we have \(X_h S_{ijk}^h = 0 \). Using the fact \(\rho \) is function of position only in equation (1.4), we have

\[
X_h P_{ijk}^h = -\rho (C_{ijk} - X_i L^{-1} T_{jk}).
\]

Finally consider the Ricci first identity

\[
X_i |j|k - X_i |k|j = -X_h R_{ijk}^h - X_i |h R_{jk}^h.
\]

Using conditions (a) and (c) of definition (1.1), we have

\[
X_h R_{ijk}^h = -g_{ij} (\rho_k + \rho^2 X_k) + g_{ik} (\rho_j + \rho^2 X_j) + X_i (\rho_k X_j - \rho_j X_k).
\]

2. Two and Three Dimensional Finsler Spaces with Normalized Semi Parallel \(T' \)-Vector Field

In this section we shall consider two and three dimensional Finsler spaces admits normalized semi parallel \(T' \)-vector field. Let \(F^2 \) be a two dimensional Finsler space with Berwald frame \((l^i, m^i)\), where \(l^i \) is the normalised supporting element: \(l^i = \frac{\nu^i}{L} \), \(m^i \) is the normalised torsion vector: \(m^i = \frac{C^i}{\alpha} \), see [5], so that the (h)hv torsion tensor of \(M^2 \) is written as

\[
LC_{ijk} = Im_im_jm_k
\]

where \(I \) is called the main scalar of \(M^2 \). The \(T \)-tensor and \(T' \)-tensor of \(M^2 \) can be written as [5] \(T_{ijkh} = I_2 m_im_jm_km_h \) and \(T_{ij} = I_2 m_im_j = \alpha h_{ij} \), where \(I_2 = I m^j \). Any vector \(X_i \) of \(F^2 \) can be written as \(X_i = X_1 l_i + X_2 m_i \), where \(X_1 = X_i l^i \) and \(X_2 = X_i m^i \). Let \(X_i \) be normalized semi parallel \(T' \)-vector field. Substituting the values of \(LC_{ijk} \) and \(T_{ij} \) in condition (b) of definition (1.1), we have

\[
X_2 = (\log I)_2
\]
where \((\log I)_2 = (\log I)|_m t\). Consider the h-torsion tensor of \(F^2\) (see [5])
\[R_{ijk} = R_{hijkl}^t = LRm_i(l_jm_k - l_km_j). \] (2.2)

Contracting this equation by \(X^i\), we have
\[X^iR_{ijk} = R_{hijkl}^t X^i = RX_2(y_jm_k - y_km_j). \] (2.3)

Further contracting equation (c) of theorem (1.1) by \(y^i\) and using proper dummy suffixes, we have
\[R_{hijkl}^t X^i = y_k(\rho_j + \rho^2X_j) - y_j(\rho_k + \rho^2X_k) + X_0(\rho_kX_j - \rho_jX_k) \] (2.4)

Equating equations (2.3) and (2.5) and contracting by \(l^k m^j\), we have
\[\rho_2X_2^2 - (\log I)_2[(R + \rho^2) + \rho_1X_1] + \rho_2 = 0. \] (2.5)

Theorem 2.1. If \(X_i\) be a normalized semi parallel \(T^i\)-vector field in \(F^2\) then \(X_i = X_1l_i + (\log I)_2m_i\), where \(X_1\) is given by equation (2.5).

Now consider a three dimensional Finsler space \(M^3\) with Moore frame \((l^i, m^i, n^i)\), where \(l^i\) is the normalised supporting element: \(l^i = \frac{y^i}{l}\), \(m^i\) is the normalised torsion vector: \(m^i = \frac{C^i}{I}\) and \(n^i\) constructed by \(g_{ij}l^in^j = 0 = g_{ij}m^in^j\) and \(g_{ij}n^in^j = 1\), so that the \((h)hv\) torsion tensor of \(M^3\) is written as
\[LC_{ijk} = Hm_im_jm_k - J\pi_{(ijk)}(m_in_jn_k) + l\pi_{(ijk)}(m_in_jn_k) + J(n_in_jn_k) \] (2.6)

where the functions \(H, I\) and \(J\) are main scalars of \(M^3\) satisfying \(LC = H + I\) and the notation \(\pi_{(ijk)}\) indicates cyclic permutation of indices \(i, j, k\) and summation, see [5]. Contraction of (2.6) by \(g^{jk}\) gives
\[LC_i = (H + I)m_i = LCm_i. \] (2.7)

Differentiation of (2.7) \(v\)-covariantly with respect to \(y^j\) gives
\[T_{ij} = LC_i\big|j + C_il_j + C_jl_i = (LC)_2m_im_j + Cv_3n_in_j + Cv_2(n_im_j + n_jm_i), \] (2.8)

where \(v_i\) is \(v\)-connection vector of \(M^3\) given by \(v_i = v_1l_i + v_2m_i + v_3n_i\) satisfying \(v_1 = 0\) and \(v_2 = C^{-1}(LC)_3\) (see [5]).

Now any vector \(X_i\) of \(F^3\) can be written as \(X_i = X_1l_i + X_2m_i + X_3n_i\), where \(X_1 = X_1l^i\), \(X_2 = X_im^i\) and \(X_3 = X_in^i\). Let \(X_i\) be normalized semi parallel \(T^i\)-vector field. Substituting the values of \(LC_{ijk}\) and \(T_{ij}\) in condition (b) of definition (1.1), we have
\[HX_2 - JX_3 - (LC)_2 = 0, \quad -J + IX_3 - Cv_2 = 0 \quad \text{and} \quad IX_2 + JX_3 - Cv_3 = 0. \] (2.9)
Eliminating X_2 and X_3 from three relations of equations (2.9), we have

$$(LC)_2(J^2 + I^2) + Cv_2(LCJ) + Cv_3(J^2 - HI) = 0. \quad (2.10)$$

In particular, if $v_3 = C^{-1}(LC)_2$ then $Sv_3 + LCJv_2 = 0$, where $S = 2J^2 + I^2 - HI$ is the v-scalar curvature of F^3.

Theorem 2.2. If a three dimensional Finsler space F^3 admitting a normalized semi parallel T'-vector field X_i, then $(LC)_2(J^2 + I^2) + Cv_2(LCJ) + Cv_3(J^2 - HI) = 0$. In particular if $v_3 = C^{-1}(LC)_2$ then $Sv_3 + LCJv_2 = 0$, where $S = 2J^2 + I^2 - HI$ is the v-scalar curvature of F^3.

3. Special Finsler Spaces with Normalized Semi Parallel T'-Vector Field

In this section we consider the behaviour of some special Finsler spaces, for instance, Landsberg space, Finsler space with scalar curvature, C-reducible space, S-4 like Finsler space admitting a normalized semi parallel T'-vector field.

Definition. (see [5]) An n dimensional Finsler space F^n is Landsberg space iff its hv-curvature P_{hijk} vanishes.

Theorem 3.1. If a Landsberg space F^n admits a normalized semi parallel T'-vector field X_i then the scalar ρ vanishes.

Proof. Since F^n is Landsberg $P_{hijk} = 0$. From condition (b) theorem(1.1), we have

$$\rho(C_{ijk} - X_iT_{jk}) = 0. \quad (3.1)$$

Contracting above equation by y^i, we have $\rho X_0 T_{jk} = 0$ but $X_0 \neq 0$ due to proposition (1.1). If possible let $\rho \neq 0$, then $T_{jk} = 0$. From equation (3.1) we have $\rho C_{ijk} = 0$, which gives $C_{ijk} = 0$ i.e., the space is Riemannian, which is a contradiction. Hence $\rho = 0$.

Now consider a Finsler space with scalar curvature which is characterized by [5]

$$R_{hijk} = -y^iR_{hijk} = \frac{1}{3}L^2(K)_j h_{hk} - K_{kj} h_{hj} + K(y_j h_{hk} - y_k h_{hj}). \quad (3.2)$$

where K is positively homogeneous of degree zero in y^i and called scalar curvature of F^n. Contracting above equation by X^h and using condition(c) of
If F^n be a Finsler space with scalar curvature admitting a normalized semi parallel T'-vector field X_i then $X_i = \lambda y_i + \mu \rho_i$ provided $L^2(\rho^2 + K) + X_0 \rho_0 \neq 0$ where $\lambda = \frac{(\rho_0 + X_0(K + \rho^2))}{(L^2(\rho^2 + K) + X_0 \rho_0)}$ and $\mu = \frac{(X_0^2 - L^2)}{(L^2(\rho^2 + K) + X_0 \rho_0)}$.

Theorem 3.2. If F^n be a Finsler space with scalar curvature admitting a normalized semi parallel T'-vector field X_i then $X_i = \lambda y_i + \mu \rho_i$ provided $L^2(\rho^2 + K) + X_0 \rho_0 \neq 0$ where $\lambda = \frac{(\rho_0 + X_0(K + \rho^2))}{(L^2(\rho^2 + K) + X_0 \rho_0)}$ and $\mu = \frac{(X_0^2 - L^2)}{(L^2(\rho^2 + K) + X_0 \rho_0)}$.

Now consider a C-reducible Finsler space, which is characterized as follows.

Definition. (see [5],[6]) An $n(n \geq 3)$ dimensional Finsler space is called C-reducible if the tensor C_{ijk} is written in the form

$$C_{ijk} = \frac{1}{n+1} (h_{ij}C_k + h_{jk}C_i + h_{ki}C_j).$$

(3.5)

The T'-tensor T_{jk} of a C-reducible Finsler space can be written as [5]

$$T_{jk} = LC_j|k + C_jl_k + C_jl_k = \alpha h_{jk}$$

(3.6)

where $\alpha = \frac{LC_{i|j}}{n-1}$. Substituting the values of C_{ijk} and T_{jk} in equation (b) of definition (1.1), we have $\alpha h_{jk} = \frac{L}{n+1}(Y_j C_k + Y_k C_j + (C_i X^i)h_{jk})$, where $Y_k = h_{jk}X^j$ but from (3.6) and condition (b) of definition(1.1) we have $LX_k C^k = T_{jk} g^{jk} = \alpha(n-1)$ therefore $\alpha h_{jk} = \frac{L}{n+1}(Y_j C_k + Y_k C_j + \frac{\alpha(n-1)}{L} h_{jk})$ i.e., $2\alpha h_{jk} = L(Y_j C_k + Y_k C_j)$. Contrating by C^j we have

$$2\alpha C_k = L[(C_i X_i)C_k + C^2 Y_k]$$

(3.7)

Again contracting by C^k, we have

$$(\alpha - L(X_k C^k))C^2 = 0$$

(3.8)

i.e., $\alpha(n-2)C^2 = 0$ but $n \geq 3$. If $\alpha = 0$ then $T_{jk} = 0$ and hence T-tensor of C-reducible Finsler space vanishes, which is a Riemannian space, see [7]. Further
if $C^2 = 0$, from equation (3.7), $(n - 3)\alpha C_k = 0$. But a C-reducible Finsler space with $C_k = 0$ or $\alpha = 0$ both reduces to a Riemannian space, therefore we are rest only with $n = 3$. For $n = 3$ from equation (2.10) using $C^2 = 0$, we have $T_{ij} = 0$ and hence T-tensor vanishes and therefore the space is again Riemannian. Summarising all, we have

Theorem 3.3. There exist no normalized semi parallel T'-vector field in a non Riemannian C-reducible Finsler space.

Finally we consider an S-4 like Finsler spaces which is characterized by

Definition. (see [5]) An $n(n \geq 5)$ dimensional Finsler space is said to be S-4 like if ν-curvature tensor of $C\Gamma$ can be written in the form

$$S_{hijk} = h_{hj}M_{ik} + h_{ik}M_{hj} - h_{hk}M_{ij} - h_{ij}M_{hk}),$$

where M_{ij} is symmetric and indicatric tensor.

Contracting above equation by X^k and using theorem (1.1)(a), we have

$$M_i h_{hj} + M_{hj} Y_i - M_{ij} Y_h - M_h h_{ij} = 0 \quad (3.10)$$

where $Y_i = h_{ik}X^k$ and $M_i = M_{ij}X^j$. Contracting equation (3.10) by g^{ij}, we have $M_h = -\frac{M}{n-3}Y_h$ and by X^h, we have

$$M_{ij} = \lambda_1 h_{ij} + \lambda_2 Y_i Y_j. \quad (3.11)$$

where $\lambda_1 = -\frac{M_h X^h}{X^h Y_h}$ and $\lambda_2 = -\frac{2M}{(n-3)X^h Y_h}$. Thus we have

Theorem 3.4. If an S-4 like Finsler space F^n admits a normalized semi parallel T'-vector field X^i then the indicatric tensor M_{ij} of F^n is given by equation (3.11).

References

