LINEAR INTERPOLATION IN MINKOWSKI SPACE

Raheleh Ghadami1,§, Javad Rahebi2, Yusuf Yayli3

1,3Department of Mathematics
Faculty of Science
University of Ankara
Tandoğan, Ankara, TURKEY

2Department of Electrical and Electronics
Faculty of Engineering
University of Gazi
Maltepe, Ankara, TURKEY

Abstract: Linear interpolation have been done on sphere Euclidean using quaternions. In this paper, we have done the linear interpolation on Lorentzian sphere Minkowski space using split quaternions. This interpolation curve is called spherical linear interpolation in Minkowski space (slerp). Slerp forms a great arc on the split quaternion unit Lorentzian sphere. That also yields the shortest possible interpolation path between the two split quaternion on the unit Lorentzian sphere.

AMS Subject Classification: 51-XX
Key Words: quaternions, split quaternions, interpolation, Lorentz-Minkowski space, timelike vector, slerp

1. Introduction

First proposed by shoemake[7], as an alternative to using matrix representations, Hamilton’s quaternions have found favour within the computer animation community as a mean of representing orientations in 3\textit{D}.

§Correspondence author
Typically, in animating characters, key orientations are set and intermediate orientations need to be computed to create an animation connecting the poses set by orientations.

Shoemake\[7\] suggested spherical linear interpolation (slerp) as a means for determining the intermediate orientations between two given ones. In computer graphics, slerp is shorthand for spherical linear interpolation, in the context of quaternion interpolation for the purpose of animating 3D rotation. It refers to constant speed motion along a unit radius great circle arc, given the ends and an interpolation parameter between 0 and 1. It is called spherical linear because the two quaternion rotations are interpolated uniformly along a geodesic in the surface of the 3-sphere\[7\].

In this paper, first we investigate interpolation on sphere Euclidean using quaternions and then we propose these interpolation on Lorentzian spheres. So far, interpolations is done on sphere Euclidean. Our aim is to do interpolations on Lorentzian spheres using metric Lorentz and split quaternion.

2. Quaternion and Split Quaternion

Definition 1. The algebra H of quaternion is defined as the 4-dimensional vector space over \mathbb{R} having a basis $\{1, i, j, k\}$ with the following properties\[3\]

\[
\begin{align*}
 i^2 &= j^2 = k^2 = -1, \\
 ij &= -ji = k, \quad ki = -ik = j, \quad jk = -kj = i.
\end{align*}
\]

Form (1) it is clear that H is not commutative and 1 is the identity element of H. It also H is an associative algebra.

$q = a_0 \cdot 1 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k \in H \quad (a_0, a_1, a_2, a_3 \in \mathbb{R})$

we define the conjugate \overline{q} of q as $\overline{q} = a_0 \cdot 1 - a_1 \cdot i - a_2 \cdot j - a_3 \cdot k$. For every $q = a_0 \cdot 1 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k \in H$ we have

$q \cdot \overline{q} = (a_0^2 + a_1^2 + a_2^2 + a_3^2)$

we define the norm N_q of the quaternion q to be the nonnegative real number $a_0^2 + a_1^2 + a_2^2 + a_3^2$. $N_q = 0$ if and only if $q = 0$. If $q = a_0 \cdot 1 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k$ and $p = b_0 + b_1 \cdot i + b_2 \cdot j + b_3 \cdot k$ be two quaternion and let $r = q \ast p$, then r is given by

$r = S_q S_p - g(V_q, V_p) + S_q V_p + S_p V_q + V_q \wedge V_p$,
where

\[
S_q = a_0, \quad S_p = b_0, \quad g(V_q, V_p) = a_1 b_1 + a_2 b_2 + a_3 b_3,
\]
\[
V_q = a_1 i + a_2 j + a_3 k, \quad V_p = b_1 i + b_2 j + b_3 k,
\]
\[
V_q \wedge V_p = (a_2 b_3 - a_3 b_2) i + (a_3 b_1 - a_1 b_3) j + (a_1 b_2 - a_2 b_1) k.
\]

The algebra \(H_1\) of quaternion is defined as unit quaternion, \(q\), has a norm equal to one, that is

\[|q| = |q^{-1}| = 1 \quad \text{and} \quad N^2(q) = q^{-1}q = 1\]

Definition 2. The algebra \(H'\) of split quaternion is defined as the 4-dimensional vector space over \(R\) having a basis \(\{1, i, j, k\}\) with the following properties[4, 5]

\[
i^2 = -1, \quad j^2 = k^2 = 1 \quad (2)
\]

\[ij = -ji = k, \quad kj = -jk = i, \quad ki = -ik = j.\]

form (2) it is clear that \(H'\) is not commutative and 1 is the identity element of \(H'\). It also \(H'\) is an associative algebra. For

\[q = a_0 \cdot 1 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k \in H' \quad (a_0, a_1, a_2, a_3 \in R)\]

we define the conjugate \(\overline{q}\) of \(q\) as \(\overline{q} = a_0 \cdot 1 - a_1 \cdot i - a_2 \cdot j - a_3 \cdot k \in H'\). For evry \(q = a_0 \cdot 1 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k \in H'\) we have

\[q \cdot \overline{q} = (a_0^2 + a_1^2 - a_2^2 - a_3^2)\]

we define the norm \(N_q\) and the inverse \(q^{-1}\) of the quaternion respectively the real number \(N_q = a_0^2 + a_1^2 - a_2^2 - a_3^2\) and \(q^{-1} = \frac{\overline{q}}{N_q}, N_q \neq 0\). If \(q = a_0 \cdot 1 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k\) and \(p = b_0 + b_1 \cdot i + b_2 \cdot j + b_3 \cdot k\) be two split quaternion and let \(r = q * p\), then \(r\) is given by

\[r = S_q S_p + g(V_q, V_p) + S_q V_p + S_p V_q + V_q \wedge V_p,\]

where

\[
S_q = a_0, \quad S_p = b_0, \quad g(V_q, V_p) = -a_1 b_1 + a_2 b_2 + a_3 b_3,
\]
\[
V_q = a_1 i + a_2 j + a_3 k, \quad V_p = b_1 i + b_2 j + b_3 k,
\]
\[
V_q \wedge V_p = (a_2 b_3 - a_3 b_2) i + (a_3 b_1 - a_1 b_3) j + (a_1 b_2 - a_2 b_1) k.
\]

The algebra \(H'_1\) of split quaternion is called as unit split quaternion.
3. Some Properties of Minkowski 3-Space

In this section, we give some useful definition and propositions about Minkowski space.\[5\]

Definition 3. The Lorentz-Minkowski space is the metric space $E_3^1 = (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, where the metric $\langle \cdot, \cdot \rangle$ is given

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 - u_3 v_3 \quad u = (u_1, u_2, u_3), v = (v_1, v_2, v_3)$$

The metric $\langle \cdot, \cdot \rangle$ is called the Lorentzian metric.

A vector $v \in E_3^1$ is called

1. spacelike if $\langle v, v \rangle > 0$ or $v = 0$
2. timelike if $\langle v, v \rangle < 0$
3. lightlike if $\langle v, v \rangle = 0$ and $v \neq 0$

We point out that the null vector $v = 0$ is considered of spacelike type although it satisfies $\langle v, v \rangle = 0$. The light-cone of E_3^1 is defined as the set of all lightlike vectors of E_3^1, that is,

$$C = \{(x, y, z) \in E_3^1; x^2 + y^2 - z^2 = 0\} - \{(0, 0, 0)\}.$$

see figure (3.1) The set of timelike vectors will be denote by τ and it is the following set:

$$\tau = \{(x, y, z) \in E_3^1; x^2 + y^2 - z^2 < 0\}.$$

Proposition 4. Two timelike vectors u and v lie in the same timelike cone if and only if $\langle u, v \rangle < 0$

Theorem 5. Let u and v two timelike vectors.

$$|\langle u, v \rangle| \geq \sqrt{-\langle u, u \rangle} \sqrt{-\langle v, v \rangle}$$

and the equality holds if and if u and v are two proportional vectors. In the case that both vectors lie in the same timelike cone, there exists a unique number $\varphi \geq 0$ such that

$$\langle u, v \rangle = -|u||v| \cosh \varphi$$

This number φ is called the hyperbolic angle between u and v.

Corollary 6. If u, v are two timelike vectors that lie in the timelike cone, then

$$|u + v| \geq |u| + |v|$$

and the equality holds if and if u and v are proportional.
4. Visualizing an Approximation of Angular Velocity

We want to visualize the angular velocity of the interpolation curve. For example it will be interesting to see if some of the interpolation curves have constant angular velocity. In the following, \(q_i \) denotes the \(i \)‘th frame, i.e. the \(i \)‘th quaternion in a discrete quaternion interpolation curve. To produce a graph of the angular velocity, we must define a function that gives an approximation of the angular velocity. We will base our definition in mathematics, and use that we have defined a norm on quaternions. We can define the distance between two quaternions \(q_1, q_2 \) to be \(d(q_1, q_2) = \| q_1 - q_2 \| \). Then the angular velocity \(V \) in the \(i \)‘th quaternion \(q_i \) can be approximated by the centered average:[1]

\[
V(q_i) = \frac{d(q_i, q_{i-1}) + d(q_i, q_{i+1})}{2} = \frac{\| q_i - q_{i-1} \| + \| q_i - q_{i+1} \|}{2}
\]

Plotting \(V \) as a function of the interpolation parameter yields a graph of an approximation to the angular velocity.
5. Spherical Linear Quaternion Interpolation: Slerp

The interpolation curve for Slerp forms a great arc on the quaternion unit sphere. In differential geometry terms, the great arc is a geodesic corresponding to a straight line. Not only does Slerp follow a great arc it follows the shortest great arc. Thus Slerp yields the shortest possible interpolation path between the two quaternions on the unit sphere. Furthermore Slerp has constant angular velocity. All in all Slerp is the optimal interpolation curve between two rotations.[1]

Proposition 7. Let \(q,q' \in H \). Define \(q, q' \) as the corresponding four-dimensional vectors and let \(\alpha \) be the angle between them. Then \(q \cdot q' = \|q\|\|q'\| \cos \alpha \), see [1].

Proposition 8. Let \(q = [s,v] \in H_1 \). Then there exists \(v' \in \mathbb{R}^3 \) and \(\theta \in (-\pi, \pi] \) such that \(q = [\cos \theta, v' \sin \theta] \), see [1].

Proposition 9. Let \(q \in H_1, q = [\cos \theta, \sin \theta n] \). Let \(r = (x, y, z) \in \mathbb{R}^3 \) and \(p = [0, r] \in H \). Then \(p' = pq^{-1} \) is \(p \) rotated \(2\theta \) about the axis \(n \).[1]

Definition 10. The quaternion used for a starting rotation given by \(p \) and ending with rotation \(q \), for \(p,q \in H_1, q = p (p^{-1} q)^h \). This can be written[1, 7]

\[
slerp(p,q,h) = p (p^{-1} q)^h, \; h \in [0, 1]
\]

Remark 11. The quaternion product \(p^{-1}q \) can be greatly simplified by use of the fact that, for a unit quaternion \(u = [\cos \theta, w \sin \theta] \) and \(u^t = [\cos t\theta, \sin t\theta] \). From the definition you can see that \(t = 0 \) gives rotation \(p \), \(t = 1 \) the rotation \(q \), and \(t \in (0, 1) \) gives all intermediate rotations.[1, 6, 7]

Proposition 12. The curve \(slerp(p,q,h) : H_1 \times H_1 \times [0, 1] \rightarrow H_1 \) is a great arc on the unit quaternion sphere between \(p \) and \(q \). The position vector function of Slerp has constant angular velocity.[1]

Proof. To show proposition we must prove that the following four conditions are met:

\[
\begin{align*}
\text{slerp}(p,q,0) & = p \quad (3) \\
\text{slerp}(p,q,1) & = q \quad (4) \\
\|\text{slerp}(p,q,h)\| & = 1, (h \in [0,1]) \quad (5) \\
\frac{d^2}{dh^2} \text{slerp}(p,q,h) & = c \text{slerp}(p,q,h), \; c \leq 0 \in \mathbb{R} \quad (6)
\end{align*}
\]
Conditions (3) and (4) are shown directly using the definitions for exp and log. Condition (5) is met since exp maps into H_1 and since the norm of a product is the product of the norms

$$\| \text{slerp} (p, q, h) \| = \| p \| (p^{-1} q)^{h} \| = 1 \| \exp (h \log (p^{-1} q)) \| = 1$$

To show condition (6), we need the second derivative of Slerp.

$$\frac{d}{dt} \text{slerp} (p, q, h) = \frac{d}{dt} p (p^{-1} q)^{h} = \text{slerp} (p, q, h) \log (p^{-1} q) \tag{7}$$

$$\frac{d^2}{dh^2} \text{slerp} (p, q, h) = \text{slerp} (p, q, h) \log (p^{-1} q)^2$$

Condition (6) holds if $\log (p^{-1} q)^2$ is a non-positive real number. Since $p^{-1}, q \in H_1$, then $p^{-1}, q \in H_1$. there exists $\theta \in R$ and $v \in R^3$, $|v| = 1$ such that $p^{-1} q = [\cos \theta, \sin \theta v]$. Then:

$$\log (p^{-1} q)^2 = [0, \theta v]^2 = [-\theta^2 v \cdot v, \theta^2 v \times v] = [-\theta^2, 0]$$

Thus $\frac{d^2}{dh^2} \text{slerp} (p, q, h) = c \text{slerp} (p, q, h)$ where $c = -\theta^2 \leq 0$.

Having shown that $\text{slerp} (p, q, h), h \in [0, 1]$ spans a great arc between p and q, there are still two possible curves depending on which direction around the unit sphere Slerp takes. The following proposition states that Slerp behaves as desired.

Proposition 13. Let $p, q \in H_1$. Then $\text{slerp} (p, q, h), h \in [0, 1]$, spans the shortest great arc between p and q on the unit quaternion sphere. \[1\]

Proof. Let $q_{\frac{1}{2}} = \text{slerp} (p, q, \frac{1}{2})$ and let α denote the angle between p and $q_{\frac{1}{2}}$. Slerp yields the shortest arc if and only if $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$. This is equivalent to $\cos (\alpha) \in [0, 1]$. We therefore examine the sign of $\cos (\alpha)$.

$$\cos (\alpha) = p \cdot q_{\frac{1}{2}}$$

$$= p \cdot \text{slerp} \left(p, q, \frac{1}{2} \right)$$

$$= p \cdot (p (p^{-1} q)^{\frac{1}{2}})$$
Since \(p^{-1}, q \in H_1 \) it follows that \(p^{-1}q \in H_1 \). there exists \(w \in \mathbb{R}^3, |w| = 1 \) and \(\psi \in (-\pi, \pi] \) such that \(p^{-1}q = [\cos \psi, \sin \psi w] \).

\[
\cos \alpha = p \cdot \left(p [\cos (\psi), \sin (\psi) w]^{1/2} \right) = \cos \left(\frac{\psi}{2} \right)
\]

Now \(\psi \in (-\pi, \pi] \) yields \(\cos \left(\frac{\psi}{2} \right) \geq 0 \) and therefore \(\cos (\alpha) \geq 0 \). Thus Slerp spans the shortest great arc between \(p \) and \(q \).

A formula for spherical linear interpolation form \(p \) to \(q \) with parameter \(h \) moving from 0 to 1, can be obtained two different ways. From the group structure we find

\[
slerp (p, q, h) = p \left(p^{-1}q \right)^h, \ h \in [0, 1]
\]

While from thr 4 – D geometry comes

\[
slerp (q_0, q_1, h) = \frac{q_0 \sin ((1-h)\theta) + q_1 \sin (h\theta)}{\sin \theta}
\]

where \(q_0 \cdot q_1 = \cos \theta \). Notice that this expression is not defined for \(q_0 = \pm q_1 \).

The obvious patch is \(slerp (q, q, h) \equiv q \).

The correctness of the expression above (8) can be shown in the plane. The interpolation between \(p_0 \) and \(p_1 \) can be written :

\[
q (h) = \left(\begin{array}{c} \cos (v + ht) \\ \sin (v + ht) \end{array} \right)
\]

The expression from (8) can - through applying the addition formulas for sin and cos successively -be written as:

\[
slerp (p_0, p_1, h) = \frac{p_0 \sin ((1-h)t) + p_1 \sin (ht)}{\sin (t)}
\]

\[
= \left(\frac{\cos (v) \sin((1-h)t) + \cos (v+ht) \sin (ht)}{\sin (v) \sin((1-h)t) + \sin (v+ht) \sin (ht)} \right)
\]

\[
= \left(\begin{array}{c} \cos (v) \cos (ht) - \sin (v) \sin (ht) \\ \sin (v) \cos (ht) + \cos (v) \sin (ht) \end{array} \right)
\]

\[
= \left(\begin{array}{c} \cos (v + ht) \\ \sin (v + ht) \end{array} \right)
\]

Thus, the correctness of the expression has been proven in the plane. This result can be generalized directly to four dimensions thereby proving (8) [1, 6, 7]
6. Visualizing an Approximation of Angular Velocity in Minkowski Space

We want to visualize the angular velocity of the interpolation curve in Minkowski space. In the following, q_i denotes the i’th frame, i.e. the i’th split quaternion in a discrete split quaternion interpolation curve. We will base our defini-
tion in mathematics, and use that we have defined a norm on split quaternions. We can define the distance between two split quaternions \(q_1, q_2 \) to be
\[d(q_1, q_2) = \| q_1 - q_2 \|. \]
Then the angular velocity \(V \) in the \(i \)'th split quaternion \(q_i \) can be approximated by the centered average:
\[
V(q_i) = \frac{d(q_i, q_{i-1}) + d(q_i, q_{i+1})}{2} = \frac{\| q_i - q_{i-1} \| + \| q_i - q_{i+1} \|}{2}
\]
Plotting \(V \) as a function of the interpolation parameter yields a graph of an approximation to the angular velocity in Minkowski space.

7. Linear Interpolation in Minkowski Space

In this section, we compute the interpolation on Lorentzian sphere. We have done this interpolations using metric Lorentz and split quaternion.

Lemma 14. let us express any split quaternion in polar form similar to quaternions and complex numbers.\(^4\)

(i) Every spacelike quaternion can be written in the form
\[
q = N_q (\sinh \varphi + \varepsilon_0 \cosh \varphi)
\]
where \(\sinh \varphi = \frac{q_1}{N_q}, \cosh \varphi = \sqrt{-q_2^2 + q_3^2 + q_4^2} \) and \(\varepsilon_0 = \frac{q_2 + q_3 + q_4}{\sqrt{-q_2^2 + q_3^2 + q_4^2}} \) is a spacelike unit vector in \(E_3^1 \).

(ii) Every timelike quaternion with spacelike vector part can be written in the form
\[
q = N_q (\cosh \varphi + \varepsilon_0 \sinh \varphi)
\]
where \(\cosh \varphi = \frac{q_1}{N_q}, \sinh \varphi = \sqrt{-q_2^2 + q_3^2 + q_4^2} \) and \(\varepsilon_0 = \frac{q_2 + q_3 + q_4}{\sqrt{-q_2^2 + q_3^2 + q_4^2}} \) is a spacelike unit vector in \(E_3^1 \) and \(\varepsilon_0 \times \varepsilon_0 = 1 \).

(iii) Every timelike quaternion with timelike vector part can be written in the form
\[
q = N_q (\cos \varphi + \varepsilon_0 \sin \varphi)
\]
where \(\cos \varphi = \frac{q_1}{N_q}, \sin \varphi = \sqrt{-q_2^2 - q_3^2 - q_4^2} \) and \(\varepsilon_0 = \frac{q_2 + q_3 + q_4}{\sqrt{-q_2^2 - q_3^2 - q_4^2}} \) is a timelike unit vector in \(E_3^1 \) and \(\varepsilon_0 \times \varepsilon_0 = -1 \).

Theorem 15. Let \(q = \cosh \varphi + \varepsilon_0 \sinh \varphi \) be a timelike quaternion with spacelike vector part and \(\varepsilon \) be a Lorentzian vector. Then the transformation \(R_q = q \times \varepsilon \times q^{-1} \) is a rotation through hyperbolic angle \(2 \varphi \) about the spacelike axis \(\varepsilon_0 \).\(^4\)
Theorem 16. Let \(q = \cos \varphi + \varepsilon_0 \sin \varphi \) be a timelike quaternion with timelike vector part and \(\varepsilon_0 \) be a Lorentzian vector. Then the transformation \(R_q(\varepsilon) = q \times \varepsilon \times q^{-1} \) is a rotation through \(2\varphi \) about the timelike axis \(\varepsilon_0 \).[4]

Definition 17. The split quaternion used for a starting rotation given by \(p \) and ending with rotation \(q \), for \(p,q \in H_1' \), \(q = p(p^{-1}q)^n \). This can be written

\[
\text{slerp}(p,q,n) = p(p^{-1}q)^n, \quad n \in [0, 1]
\]

slerp is spherical linear interpolation in Minkowski space.

Remark 18. The split quaternion, \(p,q \in H_1' \), product \(p^{-1}q \) can be greatly simplified by use of the fact that, for a unit quaternion \(u = [\cosh \varphi, w \sinh \varphi] \) and \(u^t = [\cosh(t\varphi), \sinh(t\varphi)] \). From the definition you can see that \(t = 0 \) gives rotation \(p \), \(t = 1 \) the rotation \(q \), and \(t \epsilon (0,1) \) gives all intermediate rotations.

Proposition 19. The curve \(\text{slerp}(p,q,n) : H_1' \times H_1' \times [0, 1] \rightarrow H_1' \) is a great arc on the unit split quaternion Lorentzian sphere between \(p \) and \(q \).

Proof. To show proposition we must prove that the following four conditions are met:

\[
\text{slerp}(p,q,0) = p \quad (9)
\]
\[
\text{slerp}(p,q,1) = q \quad (10)
\]
\[
\|\text{slerp}(p,q,n)\| = 1, \quad (n \in [0, 1]) \quad (11)
\]
\[
\frac{d^2}{dh^2} \text{slerp}(p,q,n) = \text{slerp}(p,q,n) \log (p^{-1}q), \quad c > 0 \in R \quad \| \text{slerp}(p,q,n) \| = 1 \quad (12)
\]
\[
\frac{d^2}{dh^2} \text{slerp}(p,q,n) = \text{slerp}(p,q,n) \log (p^{-1}q), \quad c \leq 0 \in R \quad \| \text{slerp}(p,q,n) \| = 1 \quad (13)
\]

Conditions (9) and (10) are shown directly using the definitions for \(\exp \) and \(\log \).

Condition (11) is met since \(\exp \) maps into \(H_1' \) and since the norm of a product is the product of the norms

\[
\| \text{slerp}(p,q,n) \| = \| p \| \| (p^{-1}q)^n \| = 1 \| \exp (n \log (p^{-1}q)) \| = 1
\]

To show condition (12), we need the second derivative of Slerp.

\[
\frac{d}{dt} \text{slerp}(p,q,n) = \frac{d}{dt} p(p^{-1}q)^n = \text{slerp}(p,q,n) \log (p^{-1}q)
\]
\[\frac{d^2}{dh^2} \text{slerp} (p, q, n) = \text{slerp} (p, q, n) \log (p^{-1}q)^2 \]

Condition (12) holds if \((p^{-1}q)^2\) is a positive real number. Since \(p^{-1}, q \in H'_1\), then \(p^{-1}, q \in H_1\). There exists \(\varphi \in R\) and \(v \in E^3_1, \overrightarrow{w} \ast \overrightarrow{w} = 1 \overrightarrow{w}\) is spacelike unit vector such that \(p^{-1}q = [\cosh \varphi, \sinh \varphi w]\). Then:

\[
\log (p^{-1}q)^2 = [0, h\varphi w]^2 \\
= [h^2\varphi^2 v \cdot v, h^2\varphi^2 v \times v] \\
= [h^2\varphi^2, 0]
\]

Thus \(\frac{d^2}{dh^2} \text{slerp} (p, q, n) = c \text{slerp} (p, q, n)\) where \(c = h^2\varphi^2 > 0\).

To show condition (13), we need the second derivative of Slerp.

\[
\frac{d}{dt} \text{slerp} (p, q, n) = \frac{d}{dt} p (p^{-1}q)^n \\
= \text{slerp} (p, q, n) \log (p^{-1}q)
\]

\[
\frac{d^2}{dh^2} \text{slerp} (p, q, n) = \text{slerp} (p, q, n) \log (p^{-1}q)^2
\]

Condition (13) holds if \((p^{-1}q)^2\) is a non-positive real number. Since \(p^{-1}, q \in H'_1\), then \(p^{-1}, q \in H_1\). There exists \(\varphi \in R\) and \(v \in E^3_1, \overrightarrow{w} \ast \overrightarrow{w} = -1 \overrightarrow{w}\) is timelike unit vector such that \(p^{-1}q = [\cos \varphi, \sin \varphi w]\). Then:

\[
\log (p^{-1}q)^2 = [0, \varphi w]^2 \\
= [\varphi^2 v \cdot v, \varphi^2 v \times v] \\
= [-\varphi^2, 0]
\]

Thus \(\frac{d^2}{dh^2} \text{slerp} (p, q, n) = c \text{slerp} (p, q, n)\) where \(c = \varphi^2 \leq 0\). Having shown that \(\text{slerp} (p, q, n), n \in [0, 1]\) spans a great arc between \(p\) and \(q\).

Proposition 20. Let \(p, q \in H'_1\). Then \(\text{slerp} (p, q, n), n \in [0, 1]\), spans the shortest great arc between \(p\) and \(q\) on the unit split quaternion Lorentzian sphere.

Proof. Let \(q_{\frac{1}{2}} = \text{slerp} (p, q, \frac{1}{2})\) and let \(\alpha\) denote the hiperbolic angle between \(p\) and \(q_{\frac{1}{2}}\). Slerp yields the shortest arc if \(\alpha \in R^+, \cosh \alpha \geq 0, \cosh \alpha \in [0, \infty)\).

\[
\cosh (\alpha) = p \cdot q_{\frac{1}{2}}
\]
\[= p \cdot \text{slerp} \left(p, q, \frac{1}{2} \right) \]
\[= p \cdot (p^{-1} q) \frac{1}{2} \]

Since \(p^{-1} q \in H_1^* \) it follows that \(p^{-1} q \in H_1^* \), there exists \(w \in E_3^1, |w| = 1 \) such that \(p^{-1} q = [\cosh \varphi, \sinh \varphi w] \). Then

\[
cosh \alpha = p \cdot \left(p \left[\cosh \left(\frac{\varphi}{2} \right), \sinh \left(\frac{\varphi}{2} \right) w \right] \right) = p \cdot \left(p \exp \left(\left(\frac{1}{2} \right) \log [\cosh \varphi, \sinh \varphi w] \right) \right) = p \cdot \left(p \exp \left(\left[0, h \left(\frac{\varphi}{2} \right) \right] w \right) \right) = p \cdot \left(p \left[\cosh \left(\frac{\varphi}{2} \right), \sinh \left(\frac{\varphi}{2} \right) w \right] \right) = (p \cdot [1, 0]) \cdot \left(p \left[\cosh \left(\frac{\varphi}{2} \right), \sinh \left(\frac{\varphi}{2} \right) w \right] \right) = \| p \|^2 \left([1, 0] \cdot \left[\cosh \left(\frac{\varphi}{2} \right), \sinh \left(\frac{\varphi}{2} \right) w \right] \right) = \| p \|^2 \cosh \left(\frac{\varphi}{2} \right) = \cosh \left(\frac{\varphi}{2} \right)
\]

Now \(\cosh \left(\frac{\varphi}{2} \right) \geq 0 \) and therefore \(\cosh (\alpha) \geq 0 \). Thus Slerp spans the shortest great arc between \(p \) and \(q \) on the unit split quaternion Lorentzian sphere. \(\square \)

A formula for interpolation in Minkowski space form \(p \) to \(q \) with parameter \(n \) moving from 0 to 1, can be obtained two different ways. From the group structure we find

\[\text{slerp} \left(p, q, n \right) = p \left(p^{-1} q \right)^n, \quad n \in [0, 1], \quad p, q \in H_1^* \]

While from thr 4 – D geometry comes

\[\text{slerp} \left(q_0, q_1, n \right) = \frac{q_0 \sinh ((1 - n) \varphi) + q_1 \sinh (n \varphi)}{\sinh(\varphi)}, \quad (16) \]

\[p, q \in H_1^*, \quad n \in [0, 1] \]

where \(- (q_0, q_1) = \cosh \varphi\). Slerp is spherical linear interpolation in Minkowski space.
The correctness of the expression above\((16) \) can be shown in the plane. The interpolation between \(p_0 \) and \(p_1 \) can be written:

\[
q(n) = \begin{pmatrix}
\cosh(v + nt) \\
\sinh(v + nt)
\end{pmatrix}
\]

The expression from \((16) \) can - through applying the addition formulas for \(\sinh \) and \(\cosh \) successively - be written as:

\[
(p_0, p_1, n) = \frac{p_0 \sinh((1 - n)t) + p_1 \sinh(nt)}{\sinh(t)}
= \begin{pmatrix}
\cosh(v) \cosh(nt) + \sinh(v) \sinh(nt) \\
\sinh(v) \cosh(nt) + \cosh(v) \sinh(nt)
\end{pmatrix}
= \begin{pmatrix}
\cosh(v + nt) \\
\sinh(v + nt)
\end{pmatrix}
= q(n)
\]

Thus, the correctness of the expression has been proven in the plane. This result can be generalized directly to four dimensions thereby proving \((16) \).
Figure 4: The shapes of interpolation are simulated with MATLAB R2010a: a) Quaternion interpolation between the two key frames in Minkowski space, there are 50 interpolated frames; b) Inside scope; c) Outside scope, d) Velocity graph split quaternion interpolation.

References

