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Abstract: An optimal control model for a host-parasitoid interaction is con-
sidered. The host-parasitoid interaction is described by a coupled pair of partial
differential equation (with initial and boundary values) for the host; and a de-
lay ordinary differential equation (with initial value) for the parasitoid. The
parasitoid population is assumed to be a biological control agent against the
host which is assumed to be a pest population. A time dependent control mea-
sure is practiced to make sure that the parasitoid is effective in diminishing the
host population. An objective function is defined to study the possibility of
minimizing the cost of control measures while maximizing the effectiveness of
the parasitiod. Existence of a unique solution is proved to the resulting host-
parasitoid state equations. Other results include establishing a unique optimal
solution of the optimal control model.
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1. Introduction

Host-parasitoid dynamics brings about significant changes in a given environ-
ment. Indeed, it is the result of interactions between an organism (parasitoid)
which depends on another organism (host) for food and to complete its life
cycle. The principal side effects of a parasitoid is to suppress its host or to de-
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rive it to extinction. However, the outcome of host-parasitoid dynamics could
be perceived as either positive or negative. The negative side effect of a para-
sitiod population is felt through the socioeconomic and environmental damages
which it causes. This happens when the parasitoids attack economically and
environmentally vital biological organisms. Contrary to this, parasitoids could
be needed as biological control agents if their host has to be either eliminated
or substantially reduced in a given environment ([9], [11], [13], [18]). Take for
example, Entomopathogenic fungi, which has proved to be a good biological
control agent as it is a natural enemy of Varroa mite. Varroa mite causes honey
bee colonies to decline in North Carolina [9]. Another example of a biological
control agent are the leaf-mining flies in the genus Hydrellia (Hydrellia Balciu-
nasi, Hydrellia pakistanae) which are native to the United States or imported.
These flies have been used to control the aquatic weed Hydrilla, a plant popu-
lation invading the swamps and lakes of the southern parts of America causing
environmental damage by out-competing local plants [1]. The Kariba weed in
Zembabwe is another aquatic weed which is controlled by a biological agent
(Cyrtobagous salviniae) [10].

However, there are certain conditions to consider while implementing bio-
logical control. For example, if two or more parasitoids are known to use the
same host, assessment should be done to see which parasitoid effectively at-
tacks a specific host [27]. Related results on competition among parasitoids
for the same host and outcomes that follow are given in Taylor [28] and refer-
ences therein. Moreover, if a parasitoid is imported from another environment,
then monitoring the newly introduced parasitiod is vital to foster the biological
control effort [29]. Monitoring activities include, protecting the parasitoid from
possible obstacles such as, disease or natural enemies that hinder its adjustment
to the new environment [11].

All of the controlling activities mentioned here come with overhead costs
which should be minimized. In other words, the biological control practice
should be cost-effective, (see for example studies in [14] and [21]). The imple-
mentation of a parasitoid-based biological control to suppress a host population
causing economical damage has been studied by Mills and Getz [22] related to
case studies. Host-parasitoid dynamics has been studied using several mathe-
matical models ([8], [12], [23]). Most of these models stem from the well known
Nicholson-Baily discrete model [24]. Some variations of the Nicholson-Baily
models (discrete as well as continuous in time) have been applied in studies
involving the roles of spatial refuge [23] and the effects of a common parasitoid
for two hosts [8]. Among continuous mathematical models of host-parasitoids
problems we find the work of Henson and Cushing [15] where a size-structured
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host-parasitoid model was developed. An age-structured version of this model,
where the birth rate in the host population is density dependent was latter stud-
ied by Blayneh ([6] and [7]). Our study in this paper extends the age-structure
host-parasitoid model considered in [6] by adding optimal control terms.

Optimal control models have been used in biological problems, notably in
population interactions and diseases (see for example [4], [5], [16] and [19]).
The models range from discrete to systems of ordinary differential equations
and partial differential equations, with variable applications such as HIV [17],
vector-borne diseases [4, 5] and pest control [21]. Although some work on opti-
mal control has been done for some spatial models involving partial differential
equation, to the authors’ knowledge, optimal control model for a host-parasitoid
interaction between an age-structured host and a parasitoid population has not
been studied. Our goal is to investigate the impact of a time dependent control
function on the outcome of implementing a biological control agent (in partic-
ular a parasitoid) to reduce a pest (which we label as host: plant or animal)
population. We then employ analytical method to prove the existence of a
unique optimal control function where the host species is suppressed while the
running cost is a minimal.

This paper is organized as follows. The basic model for host-parasitoid
interactions which is studied in [6] is presented along with descriptions of model
parameters and functions in Section 2. This model is then extended to consider
an optimal control function in Section 3. The resulting model is augmented by
the cost (objective) function to complete the optimal control model formulation.
Furthermore, in the same section, a theorem stating that the state system is
well-posed is proved and the baseline for the existence and uniqueness of solution
to the optimal control model is presented. The existence of an optimal control
solution is proved in Section 4 followed by concluding remarks in Section 5.

2. Model

In this study, we consider an optimal control model, where the state equation
describes a host-parasitoid interaction. This equation consists of a coupled
pair of partial and ordinary differential equations (with initial and boundary
conditions). In particular, the dynamics of the host population is described by
a partial differential equation of the density of the host as a function of age
and time, whereas the adult parasitoid is modeled by an initial valued integro-
differential equation as a function of time.

To start with, for the sake of completeness, we first review the base models
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in [6]. Let ρ(t, a) be the density of the host population in the range [a, a+∆)
and let y(t) be the density of the adult parasitoid population at time t. As
parasitoids live and reproduces on the host, their reproduction and success
depend on the host. On the other hand, the parasitoid has effect on the death
rate of the host. A host member which is attacked by parasitoids is assumed
to be weak to reproduce that reproduction is limited to adult hosts which are
free from parasitoids. It is worthwhile mentioning that similar assumptions are
shared with other researchers in biology and mathematics alike (see Barcley [2],
Henson and Cushing [15]).

The total adult host population is
∫∞

A
ρ(t, a)da, where A is the age at which

a host individual becomes adult. The birth rate in the host is β(a, P ), where P
is the total adult host population size. The initial host population is designated
by φ(t) which is assumed to be in L1(0,∞).

Model Parameters

Parameter/
Functions

Description (rates are per day)

A the age of maturity in the host population

ν the time it takes for egg of a parasitoid to become adult

I(ν) the probability that a parasitoid egg produces an emergent
parasitoid in ν time period

δ parasitoid natural death rate

ϕ(a) the probability that un matured host of age a is parasitized

φ(a) the total number of hosts of age a initially

β the per capital adult host reproduction rate

λ the per capita host death rate

D(a) the number of eggs laid in a young host of age a by adult
parasitoids

k0 carrying capacity of the environment

Table 1: Model parameters/functions and their descriptions. A young
host is a host a host not at adult stage

The dynamics of the host population with density ρ(t, a) is given by the
following initial-boundary value partial differential equation.

∂ρ(t, a)

∂t
+

∂ρ(t, a)

∂a
= − (λ(a, P ) + ϕ(a)E(y)) ρ(t, a), (2.1)

where E(y) is host-parasitoid encounter rate while the adult parasitoid is at
level y. The term φ(a)E(y) describes the per capita removal rate due to par-
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asitization. A variety of host-parasitoid encounter rate functions have been
considered in the literature. They consider search efficiency, egg-limited dy-
namics and density-dependent effects (see [26] and references therein). Our
model which is a variation of what is studied in [6], considers density-dependent
effects. The boundary condition (the total number of newborn individuals) is
density dependent as the birth rate β(a, P ) depends on the total size of the
adult host population.

ρ(t, 0) =

∫ ∞

A

β(a, P )ρ(t, a)da, t > 0 (2.2)

ρ(0, a) = φ(a) (2.3)

P (t) =

∫ ∞

0
ρ(t, a)da. (2.4)

The dynamic of the adult parasitoid population level is given by a delay
differential equation





y′(t) = I(v)E (y(t− v))

∫ A

0
ϕ(a)D(a)ρ(t − v, a)da − δy, t > 0

y(t) = y0, t ∈ [−v, 0].

(2.5)

In this sub model, I(v) is the probability that a parasitoid egg produces an
emergent parasitoid in ν time period, whereas, δ is the per capita natural death
rate of parasitoids. Analytical studies have been done on the model given by
(2.1) - (2.5) (see [6] and [7]).

The functions and parameters of this model are described in Table (1) and
satisfy the following technical assumptions. Note that R+ = [0,∞).

H1 φ λ, φ, β, and D are in C+[0,∞) and bounded on [0,∞). I ∈ C(R+, [0, 1]).

H2 E ∈ C1[0,∞), E′ > 0, E(0) = 0, limy→∞E(y) = E∞ < ∞. E satisfies
Lipschitz condition,
||E(x1)−E(x2)|| ≤ K||x1 −x2||, K > 0 is a constant and x1, x2 ∈ [0,∞).

H3 φ ∈ L1(R+).

H4 λ(a, P ) satisfies Lipschitz condition in the second variable uniformly for all
a > 0.
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3. Optimal Control Model Formulation

In Section 2, the basic model is given without control applied to enhance the
effect of the parasitoid on the host population. The objective of this section is to
formulate the control model which extends system (2.1) - (2.5). To this end, we
assume that a time dependent control is practiced to monitor the condition of
the parasitoid. The effect of the control measures on the host is indirect: it goes
through the response of the parasitoid to the control measure. Accordingly, we
have made no modification to the host model given by (2.1) - (2.4) in Section
2.

We formulate the model for the adult parasitoid population by including a
time dependent control function. In general, this control function simply de-
scribes the overall measures considered so that the biological control strategy is
effective. With a control function included, the dynamic of the adult parasitoid
becomes




y′(t) = I(v)E (y(t− v))

∫ A

0
ϕ(a) (1 + u(t))D(a)ρ(t− v, a)da − δy, t > 0

y(t) = y0, t ∈ [−v, 0],
(3.1)

where u(t) in in the control set defined by

U = {u(t) : u(t)is piecewise continuous on [0, T ] and 0 ≤ u ≤ 1} . (3.2)

Experiments and follow up of parasitoid progress could be practiced for some-
time continuously, but in most cases, this practice could be interrupted from
time to time. This means, the practice could jump up or drop to a lower value
as needed. In order to address this practice, we assume that the control function
is piecewise continuous on [0, T ], where T is the duration of control practice.
To formulate the optimal control model we define the objective function

J (u) =
1

2

∫ T

0

∫ A

0

[
(ρ(t, a)− ρ̄0(a, t))

2 da
]
dt+

α1

2

∫ T

0
(y(t)− k0)

2dt

+
α2

2

∫ T

0
(u(t)− u0(t))

2dt, (3.3)

subject to the state system given by the coupled pair of equations (2.1) - (2.4)
and (3.1). We assume that ρ, y ∈ L2 ([0, T ]) and the control u ∈ U , where U is
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the non-empty closed bounded convex subset of L2 ([0, T ]) which is defined by
(3.2).

Although the parasitoid is used as a biological control agent, its number
should be maintained at the level that the environment can sustain. To monitor
this, the term

α1

2

∫ T

0
(y(t)− k0)

2dt

is considered to be part of the objective function. This term measures the
variation of the parasitoid population level relative to the carrying capacity
k0 of the environment. Furthermore, we assume that the host density, which
is observed before the control practice started is ρ̄0. This could be obtained
experimentally at a given location (assumed to be closed to immigration of
hosts). The regularization or penalty term

α2

2

∫ T

0
(u(t)− u0(t))

2dt

represents the cost of implementing the control mechanism with weight con-
stant α2 ≥ 0, where u0(t) is an estimation of the control variable u. Therefore,∫ T

0 (u(t)− u0)
2dt describes the minimal cost provided that the optimal control

u(t) is close enough to u0(t). Note that 0 ≤ u0(t) ≤ 1. The state system for
the host and the parasitoid, with control function added, is well-possed. This
is established by the following theorem.

Theorem 1. Suppose assumptions (H1)-(H4) hold and that U is defined
by (3.2). For each control u ∈ U , the state equation given by (2.1) - (2.4) and
(3.1) has a unique solution pair (ρu(t, a), yu(t)), for t ∈ [0, T ].

Proof . The existence and uniqueness of the solution of (2.1)-(2.5) is proved
in [6]. Indeed, in [6], the proof is provided for y ∈ C+[0, T ]. This model is
extended to the modified system given by (2.1)-(2.4) and (3.1). This extension
is done by introducing a control function u(t), which is piecewise continuous
on [0, T ]. Clearly u(t) has finite discontinuity points t1, ..., tn in [0, T ]. Consider
[0, t1], where u(t) is continuous and < 0 < t1 < T and apply the result in [6]
to prove that (2.1) - (2.4) and (3.1) has unique solution pair (ρu(t, a), yu(t))
on [0, t1]. Note that this process can be repeated on each of the subintervals
[t1, t2], ..., [tn−1, T ]. At each end point ti, consider the boundary and initial val-
ues (2.2) and (2.3) to be ρ(ti, 0) =

∫∞

A
β(a, P (ti)ρ(ti, a)da and ρ(ti, a) = φi(a),

in that order. From this proof, it is clear that the solution of the pair of the
state equations (2.1) - (2.4) and (3.1) is piecewise continuous on [0, T ]. ♦
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The solution of the coupled PDE (2.1) - (2.4), ρ and the ODE (3.1), y depend
on the control parameter u and will be denoted by ρ(u) and y(u), respectively.

The optimal control problem is formulated as follows: Determine y⋆(t),
u⋆(t), and ρ⋆(t, a) such that

(O)





J (ρ⋆, y⋆, u⋆) = Inf J (ρ, y, u)

y′(t) = I(v)E (y(t− v))

∫ A

0
ϕ(a) (1 + u(t))D(a)ρ(t− v, a) da − δy, t > 0

y(t) = y0, t ∈ [−v, 0]

∂ρ(t, a)

∂t
+

∂ρ(t, a)

∂a
= − (λ(a, P ) + ϕ(a)E(y)) ρ(t, a)

ρ(t, 0) =

∫ ∞

A

β(a, P )ρ(t, a)da, t > 0

ρ(0, a) = φ(a)

P (t) =

∫ ∞

0
ρ(t, a)da.

(3.4)
Theorem (2) establishes the existence of optimal control for (3.4). But,

before that, we define the Gâteaux derivative (see [20])

Definition 1. The Gâteaux derivative (directional derivative) ofX, X̂ (ũ),
is defined as follows:

X̂ (u, ũ) = X̂ (ũ) = lim
α→0

X (u+ αũ)−X (u)

α
, (3.5)

(where ũ is the perturbation of u)

Theorem 2. Assume that U is a non-empty closed bounded convex subset
of L2 ([0, T ]) and that f, φ ∈ L2 ([0, T ]). Then, there exists α̃ such that for
α ≥ α̃, the cost function, J , is strictly convex. Moreover, for α ≥ α̃, there
exists a unique optimal control u⋆ ∈ U and associated solution pair ρ⋆ and y⋆

such that
J (u⋆) ≤ J (u) , ∀u ∈ U .

4. Existence of Optimal Control

We devote this section to give the proof of Theorem 2. But first, we state and
prove the following lemma where we will use the Gâteaux derivative given in
Definition 1.
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Lemma 1. Let ρ and y be the unique solution of (2.1) - (2.4) and (3.1).
The mapping u 7→ (ρ(u), y(u)) has a Gâteaux derivative in every direction
ũ ∈ L2 ([0, T ]).
The Gâteaux derivatives ρ̂ and ŷ are solutions of the systems





∂ρ̂(t, a)

∂t
+

∂ρ̂(t, a)

∂a
= − (λ(a, P ) + ϕ(a)E(y)) ρ̂(t, a)−

(
ϕ(a)E′(y)ŷ

)
ρ̂(t, a),

ρ̂(t, 0) =

∫ ∞

A

β(a, P )ρ̂(t, a)da, t > 0,

ρ̂(0, a) = 0,
P (t) =

∫∞

0 ρ̂(t, a)da
(4.1)

and




ŷ′(t) = I(v)E′ (y(t− v)) ŷ(t− v)

∫ A

0
ϕ(a) (1 + u(t))D(a)ρ(t− v, a)da+

I(v)E (y(t− v))

∫ A

0
[ϕ(a) (1 + u(t))D(a)ρ̂(t− v, a) + ϕ(a)ũ(t)×

D(a)ρ(t− v, a)] da− δŷ, t > 0,

ŷ(t) = 0, t ∈ [−v, 0],
(4.2)

respectively.
Furthermore, there exists α̃ such that, for all α ≥ α̃, the mapping u 7→ J(ρ, y, u)
is strictly convex and lower semicontinuous on U .

Proof. The existence and characterization of the Gâteaux derivatives are ob-
tained using the Monotone Convergence Theorem and regularity conditions
(existence of first derivative) on E′ (see [3, 20]).

To prove the convexity of the cost function J , we show that the function
Υ(ζ) = J (u+ ζũ), ζ ∈ IR is strictly convex near ζ = 0. The derivative Υ′(ζ)
of Υ at ζ = 0 reads:

Υ′(ζ) =

∫ T

0

∫ A

0
[(ρ(t, a)− ρ̄0(a, t))ρ̂(t, a) da] dt+ α1

∫ T

0
(y(t)− k0) ŷ(t)dt+

α2

∫ T

0
(u(t)− u0(t))ũ(t)dt,

where ρ, y, ρ̂, and ŷ are solutions of (2.1)-(2.4) and (3.1), (4.1) and (4.2) (in
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that order).

The second derivative Υ′′(ζ) of Υ(ζ) is given by

Υ′′(ζ) =

∫ T

0

∫ A

0

[
ρ̂2(t, a) + (ρ(t, a)− ρ̄0(a, t))ρ̂

′(t, a) da
]
dt

+α1

∫ T

0

[
ŷ2(t) + (y(t)− k0) ŷ

′(t)
]
dt

+α2

∫ T

0

[
ũ2(t) + (u(t)− u0(t)) ũ

′(t)
]
dt,

where ρ̂(t) and ρ̂′(t) are the second derivative of ρ with respect to u in the
directions of ũ and ũ′, respectively. Whereas, ŷ(t) and ŷ′(t) are the second
derivatives y with respect to u in the directions ũ and ũ′, respectively.
It is straightforward to see that ρ̂′ and ŷ′(t) are solutions of





∂ρ̂ ′(t, a)

∂t
+

∂ρ̂ ′

∂a
= − (λ(a, P ) + ϕ(a)E(y)) ρ̂′(t, a)− ϕ(a)E′(y)ŷρ′(t, a)

−ϕ(a)E′′(y)ŷ2ρ(t, a)− ϕ(a)E′(y)ŷ′ρ(t, a)− ϕ(a)E′(y)ŷ ρ̂(t, a)

ρ̂ ′(t, 0) =

∫ ∞

A

β(a, P )ρ̂ ′(t, a)da, t > 0,

ρ̂ ′(0, a) = 0,
(4.3)

and





ŷ′(t) = I(v)E′ (y(t− v)) ŷ(t− v)

∫ A

0
ϕ(a) (1 + u(t))D(a)ρ(t− v, a)da+

I(v)E (y(t− v))

∫ A

0
[ϕ(a) (1 + u(t))D(a)ρ̂(t− v, a)− ϕ(a)ũ(t)×

D(a)ρ(t− v, a)] da− δŷ, t > 0,

ŷ′(t) = 0, t ∈ [−v, 0],
(4.4)

respectively.

We derive (as in [3] ) a priori estimates on ρ, ρ̂, ρ̂′, y, and ŷ, ŷ′ which depend
on y0, φ, T . Using these estimates, we can show that, for β large,

Υ(0) ≥ γ|u|2
L2

([0,T ])
, ∀u ∈ L2 ([0, T ]) ,
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where γ is a positive constant parameter depending on these parameters, namely
(y0, φ, T ). This complete the proof the lemma. ♦
The strict convexity of the cost function J implies the existence and uniqueness
of the minimum of the functional J and therefore the optimal control [20].

5. Concluding Remarks

We study optimal control measures to limit the growth of a host species (non
exotic plant or animal) which is invading a local environment. The invad-
ing species is known to cause damage by preventing the local animal or plant
species from evolving as it should. To prevent the host species from invading
the local habitat, a biological control approach is used instead of mechanical
and drug-based control measures which could have a lasting negative effect.
The biological control agent used in this study is a parasitoid (which depends
on the host for survival and hence limits the host’s growth). Using a cou-
pled pair of partial and a delay ordinary differential equations to describe the
host-parasitoid interaction, we introduced a time dependent control term. The
control term describes efforts to facilitate the parasitoid success to evolve in the
area and attack the invading species. We proved that the resulting model is
well-posed. We also proved that a unique biological control approach could be
implemented to fight against the invading species and that the method is also
cost-effective. It is part of our future plan to implement analytical as well as
computational techniques and see what the outcome of introducing more than
one parasitoid (natural enemies) of the invading species. This is a problem
worthwhile studying, both from the biological and the cost-effectiveness point
of view.
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