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Abstract: Continued Fractions method has been used to obtain a transient
solution for the system size probabilities in an M/M/1 queue with instanta-
neous Bernoulli feedback subject to Catastrophes, Server Failures and Repairs.
The steady state analysis of system size probabilities and some performance
measures of the system are deduced. Further, Busy Period, Reliability and
Availability of the model are analyzed. Finally Numerical Illustrations are pro-
vided to see the effect of parameters on system performance measures.
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1. Introduction

In communication systems, the messages which are turned down as errors by
the receiver are retransmitted back to the transmitter. The transmitter re
sends the original message again. This can be modeled as feedback queues.
To study the system (like communication and computer networks) behaviour
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over a time horizon, we require time dependent analysis of queues, since the
steady state results are inappropriate in situations where the time horizon of
operations is finite. Transient state measures are very important to track down
the functioning of the system at any instant of time. In telecommunication
systems, especially in wide area network, data are combined into a signal which
is then divided by the network management called packets and is sent through
the network path. The routing is more complex and dynamic. At each node
the processor detects the packet address and sends it through the best available
path to the next node. As the transmission channel is an electrical medium(e.g.
wires, coaxial cable and optical fiber)packets are often subjected to distortion.
We have “repeaters”in the transmission system which rebuild or regenerate the
packet(signal) into its original form. This is a situation which demands the
time dependent analysis of feedback queues. The detection, decision and path
routing are done for each packet in real time and so the packets do not pile up
for service. Even if there is a reasonable size buffer or queue, they would soon
overflow resulting the packet(message) loss or refusal. At times, packets are held
up in nodes due to unavailability of paths in the network. This causes delay
of several seconds or minutes for the complete message to reach the intended
receiver. Finally this ends up in server service degradation.

By knowing the mean current buffer(queue) size and hence the waiting
time of a packet at a node, the incoming packet may be diverted to another
feasible node. Time dependent analysis of queueing models will be helpful in
perturbing the parameters involved in the system so that we can have control
over the system (in areas like flow congestion, short duration failures of nodes),
which results in optimum solutions(server service upgradation) of the system.

There are methods that have been derived for obtaining transient solution
of queues: generating function method by Bailey [1], spectral method by Leder-
man and Reuter [13], combinatorial method by Champernowene [2], difference
equation method by Conolly [3], alternative approach of generating functions
by Parthasarathy [19]. The theory of continued fractions can be found in Jones
and Thron [8]. Its application to the study of birth and death process was initi-
ated by Murphy and O’Donohoe [15]. Flajolet and Guillemin [7], Parthasarathy
et.al., [16], [17] and [18], Thangaraj and Vanitha [22] have applied continued
fraction technique to study the transient behaviour of the queueing systems.
We have used the continued fraction technique to obtain the transient solution
of the M/M/1 queue with feed back subject to catastrophe ,server failures and
repairs.

Feedback queues play a vital role in the areas of Computer networks, Pro-
duction systems subject to rework, Hospital management, Super markets and
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Banking business etc. Takacs [20] introduced the concept of feedback queues.
The queueing systems which include the possibility for a customer to return
to the server for additional service are called queues with feedback. Dis-
ney, McNickle and Simmon [5], D’Avignon and Disney [4], Krishnakumar [10],
Thangaraj and Vanitha [21] and [22] are a few to be mentioned for their con-
tribution.

The rest of the paper is organized as follows: In Section 2, the mathematical
description of the considered queueing system is given. In Section 3, the tran-
sient state probabilities of the system are derived. In Section 4, steady state
probabilities of the system are deduced. In Section 5, we obtained several per-
formance measures of the system. In Section 6, reliability analysis of the system
has been carried. Finally, in Section 7 some Numerical examples are provided
to illustrate the effect of parameters on some performance characteristics.

2. Description of the Model

arrival: Customers arrive at the server according to poisson process with pa-
rameter λ.

server: Single server M/M/1 queueing system.

service: Service times of the customers are iid exponential random variable
with parameter µ and service is FCFS.

feedback: After completion of each service the customer either join at the
end of the queue with probability p or leave the system with probability
q = 1− p.

catastrophes: The catastrophes occur at the server as a independent poisson
process with parameter ν and inactivate the server upon arrival.

repairs: The repair times of the failed server are iid exponential random vari-
able with parameter η.

Our system behaves as a standard M/M/1 queue. Whenever a catastrophe
occur at a server, immediately the server is inactivated and all the customers
in the system are flushed out. Customers arrive during the repair time are
considered to be lost for ever. The customers both newly arrived and feedback
from the queue are served in the order in which they join the tail of the original
queue. we do not consider any distinction between regular and feedback arrival.
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Figure 1: State Transition Diagram

3. Transient Analysis of System Size Probabilities

We consider this queueing system as a model of Continuous Time Markov
Chain (CTMC). Let {X(t) : t ∈ ℜ+} be the number of customers in the system
at time t. Let Pn(t) = P

(

X(t) = n
)

, n = 0, 1, 2, ... be the state probabilities
that there are n customers in the system at time t. Let Q(t) be the probability
that the server is repair at time t. Based on the assumptions the Chapman-
Kolmogorov’s forward differential difference equations for the state probabilities
are given by

Q′(t) = −(η + ν)Q(t) + ν (1)

P ′
0(t) = ηQ(t)− (λ+ ν)P0(t) + qµP1(t) (2)

P ′
n(t) = λPn−1(t)− (λ+ qµ+ ν)Pn(t) + qµPn+1(t), n = 1, 2, 3, .... (3)

Without loss of generality, we assume that initially there is no customers in the
system and the server is up, i.e., P0(0) = 1, Q(0) = 0 and Pn(0) = 0.

In the following, for any function f(.), let f∗(z) denote its Laplace Trans-
form. By taking Laplace Transform, the above system of equations are trans-
formed into the following system of equations.

(z + η + ν)Q∗(z) = ν
1

z
(4)

(z + λ+ ν)P ∗
0 (z) = 1 + ηQ∗(z) + qµP ∗

1 (z) (5)

(z + λ+ qµ+ ν)P ∗
n(z) = λP ∗

n−1(z) + qµP ∗
n+1(z), n = 1, 2, ... (6)

from equation (5), we have

(z + λ+ ν) =
1

P ∗
0 (z)

+ η
Q∗(z)

P ∗
0 (z)

+ qµ
P ∗
1 (z)

P ∗
0 (z)
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P ∗
0 (z) =

1

(z + λ+ ν)− ηQ∗(z)
P ∗

0
(z) − qµ

P ∗

1
(z)

P ∗

0
(z)

(7)

from equation(6), we have

(z + λ+ qµ+ ν) = λ
P ∗
n−1(z)

P ∗
n(z)

+ qµ
P ∗
n+1(z)

P ∗
n(z)

λ
P ∗
n−1(z)

P ∗
n(z)

= (z + λ+ qµ+ ν)− qµ
P ∗
n+1(z)

P ∗
n(z)

P ∗
n(z)

P ∗
n−1(z)

=
λ

(z + λ+ qµ+ ν)− qµ
P ∗

n+1
(z)

P ∗

n
(z)

, n = 1, 2, 3, ... (8)

from equation(4), we have

Q∗(z) =
ν

z(z + η + ν)
(9)

substituting Q∗(z) in (7),

(z + λ+ ν) =
1

P ∗
0 (z)

(

1 +
ην

z(z + η + ν)

)

+ qµ
P ∗
1 (z)

P ∗
0 (z)

from this,we get

P ∗
0 (z) =

1 + ην
z(z+η+ν)

(z + λ+ ν)− qµP ∗

1
(z)

P ∗

0
(z)

(10)

using (8) iteratively in (10) we express P ∗
0 (z) as a continued fraction

P ∗
0 (z) =

1 + ην
z(z+η+ν)

(z + λ+ ν)−
qµλ

(z + λ+ qµ+ ν)−
qµP ∗

2 (z)

P ∗
1 (z)

P ∗
0 (z) =

1 + ην
z(z+η+ν)

(z + λ+ ν)−
λqµ

(z + λ+ qµ+ ν)−
λqµ

(z + λ+ qµ+ ν)− · · ·
The above equation can be written as,

P ∗
0 (z) =

1 + ην
z(z+η+ν)

(z + λ+ ν)− Φ(z)
(11)
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where

Φ(z) =
λqµ

(z + λ+ qµ+ ν)−
λqµ

(z + λ+ qµ+ ν)−
λqµ

(z + λ+ qµ+ ν)− · · ·

=
λqµ

(z + λ+ qµ+ ν)− Φ(z)

this implies that

Φ(z)2 − (z + λ+ qµ+ ν)Φ(z) + λqµ = 0

the roots of this quadratic equation are

α(z), β(z) =
w ±

√

w2 − 4λqµ

2

where w = z + λ + qµ + ν. It is seen that β(z) is a unique real root within
[0, 1) and 0 ≤ z < 1, [8]. So we consider only β(z) for our further discussion
substituting β(z) for Φ(z) in(11), we get

P ∗
0 (z) =

1 + ην
z(z+η+ν)

(z + λ+ ν)−
(

w−
√

w2−4λqµ
2

) (12)

after some algebra P ∗
0 (z) reduces to

(

1 + ην
z(z+η+ν)

)

× w−
√

w2−4λqµ
2λqµ

1− qµ(w−
√

w2−4λqµ)
2λqµ

Expanding binomially

P ∗
0 (z) =

(

1 +
ην

z(z + η + ν)

)( ∞
∑

n=0

(qµ)n
(

w −
√

w2 − 4λqµ

2λqµ

)n+1)

By Inverting P ∗
0 (z),we get the explicit expression for P0(t)

P0(t) =

∞
∑

n=0

(n+ 1)(qµ)n

(λqµ)
n+1
2

e−(λ+qµ+ν)t In+1(2
√
λqµt)

t

+ (ην)

∞
∑

n=0

(n+ 1)(qµ)n

(λqµ)
n+1
2

∫ t

0

∫ u

0
e−(λ+ν)ve−(λ+qµ+ν)(u−v) In+1(2

√
λqµ(u− v))

(u− v)
dvdu

(13)
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where In(.)is the modified Bessel function of the first kinds of order n.
We get the other transient probabilities Pn(t) for n = 1, 2, 3, ..., in terms of

P0(t) and Q(t). From (8),

P ∗
n(z)

P ∗
n−1(z)

=
λ

(z + λ+ qµ+ ν)− qµP ∗

n+1(z)

P ∗

n
(z)

, n = 1, 2, 3, ...

=
λ

(z + λ+ qµ+ ν)−
λqµ

(z + λ+ qµ+ ν)− · · ·

=
λ

(z + λ+ qµ+ ν)− Φ(z)

(14)

where Φ(z) =
λqµ

(z + λ+ qµ+ ν)− Φ(z)
this implies that

Φ(z)2 − (z + λ+ qµ+ ν)Φ(z) + λqµ = 0

the roots of this quadratic equation are

α(z), β(z) =
w ±

√

w2 − 4λqµ

2

where w = z + λ + qµ + ν. It is seen that β(z) is a unique real root within
[0, 1) and 0 ≤ z < 1, [8]. So we consider only β(z) for our further discussion
substituting β(z) for Φ(z) in (14), we get

P ∗
n(z)

P ∗
n−1(z)

=
λ

(z + λ+ qµ+ ν)− w−
√

w2−4λqµ
2

=
2λ(w −

√

w2 − 4λqµ)

4λqµ
, n = 1, 2, 3, ...

Hence, we have

P ∗
n(z) =

(

w −
√

w2 − 4λqµ

2qµ

)

P ∗
n−1(z), n = 1, 2, 3, ...

=

(

w −
√

w2 − 4λqµ

2qµ

)n

P ∗
0 (z)

On Inversion,we get

Pn(t) =

∫ t

0
P0(u)

(

λ

qµ

)

n
2
e−(λ+qµ+ν)(t−u)n

In(2
√
λqµ(t− u))

(t− u)
du (15)
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We have
Q∗(z) =

ν

z(z + η + ν)

On Inversion, we get

Q(t) = ν

∫ t

0
e−(η+ν)udu

=
ν

η + ν

(

1− e−(η+ν)t

) (16)

Thus equations (16),(13) and (15) completely determine all the transient state
probabilities Q(t), P0(t) and Pn(t), n = 1, 2, 3, ...

Remark 1. If we consider η tends to ∞, then Q(t) = 0 and the remaining
transient state probabilities Pn(t), n = 0, 1, 2, 3... are all coincides with the
results of Thangaraj and Vanitha [22]

Theorem 2. If ν > 0 and η > 0, then the asymptotic behaviour of the

probability of the server being idle is given by

P0(t) →
ην

η + ν

∞
∑

k=0

1

(λ+ ν)k+1

(

w1 −
√

w2
1 − 4λqµ

2

)k

as t → ∞

where w1 = λ+ qµ+ ν

Proof. Multiplying the equation (12) by z and taking limit z → 0,

lim
z→0

zP ∗
0 (z) =

ην
η+ν

(λ+ ν)

(

1− w1−
√

w2
1
−4λqµ

2(λ+ν)

)

=
ην

η + ν

∞
∑

k=0

1

(λ+ ν)k+1

(

w1 −
√

w2
1 − 4λqµ

2

)k

(17)

where w1 = λ+ qµ+ ν
By using Tauberian Theorem [23] the result follows.

Theorem 3. If ν > 0 and η > 0, then the asymptotic behaviour of the

mean system size m(t) is given by

m(t) → η(λ− qµ)

ν(η + ν)
+

2ηqµ

(η + ν)(2(λ+ ν)− (w1 −
√

w2
1 − 4λqµ))

as t → ∞
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Proof. Consider the Kolmogorov’s differential difference equations with ini-
tial conditions. Let P (z, t) = Q(t) +

∑∞
n=0 Pn(t)z

n be the probability generat-
ing function. It can be seen that the pgf P (z, t) satisfies the partial differential
equation

∂P (z, t)

∂t
= [λz+ qµ

z
−(λ+qµ+ν)]P (z, t)+qµ(1−1

z
)
(

P0(t)+Q(t)
)

+λ(1−z)Q(t)+ν

The mean system size is m(t) =
∑∞

n=1 nPn(t) =
∂P (z,t)

∂z







z=1
Differentiating the above equation with respect to z and evaluating at z = 1,

we get
dm(t)

dt
+ νm(t) = λ− qµ(1− P0(t))− (λ− qµ)Q(t)

Solving the differential equation for m(t) with m(0) =
∑∞

n=1 nPn(t) = 0, we
have

m(t) =

∫ t

0
λe−ν(t−u)du−qµ

∫ t

0
(1−P0(t))e

−ν(t−u)du−(λ−qµ)

∫ t

0
Q(t)e−ν(t−u)du

Let us denote the Laplace Transform of m(t) by m∗(z), then

m∗(z) =
λ

z(z + ν)
− qµ

z + ν

(

1

z
− P ∗

0 (z)

)

− λ− qµ

z + ν
Q∗(z)

We obtain the result by multiplying the above equation by z and taking limit
z → 0 and using Tauberian Theorem [23].

Remark 4. The measure mean m(t), is useful in transient stage as it
addresses the buffer requirements for packets in telecommunication switching
network, and give an indication of the possible waiting time of a packet before
exiting a node in a network. The more the packets in a node it inflicts the delay
in receiving the packets at destination.

4. Steady State Analysis

In this section, we derive the stationary distribution of queue length and
failure state probability of our queueing model. To define the stationary prob-
abilities we apply the Tauberian Theorem [23],

lim
s→0

sf∗(s) = lim
t→∞

f(t)
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Theorem 5. For ν > 0 and η > 0, the steady state distributions
{

Q,πn :
n ≥ 0

}

of the M/M/1 feedback queue subject catastrophes, failures and repairs

corresponds to

Q =
ν

η + ν
(18)

π0 = (1−Q)(1− ρ) (19)

πn = (1−Q)ρn(1− ρ) n = 1, 2, ... (20)

where ρ =
λ+ ν + qµ−

√

(λ+ qµ+ ν)2 − 4λqµ

2qµ
(21)

Proof. We have used the Tauberian Theorem to extract the steady state
probabilities from the transient state probabilities. First the failure state prob-
ability Q is given by

Q = lim
z→0

zQ∗(z) =
ν

η + ν

Now,

π0 = lim
z→0

zP ∗
0 (z)

=

ην
η+ν

λ+ ν −
(

λ+qµ+ν−
√

(λ+qµ+ν)2−4λqµ

2

)

after some algebra π0 simplifies to (1−Q)(1− ρ)

similarly,

πn = lim
z→0

zP ∗
n(z)

= lim
z→0

(

w −
√

w2 − 4λqµ

2qµ

)n

lim
z→0

zP ∗
0 (z)

= (1−Q)ρn(1− ρ)

It is observed that stationary probabilities exists if and only if ρ < 1.

Remark 6. If we set η tends to ∞, then Q = 0 and the remaining
steady state probabilities πn, n = 0, 1, 2, 3... are all coincides with the results
of Thangaraj and Vanitha [22]. Further if we assume ν = 0 then ρ = λ

qµ
< 1,

which is the steady state condition for an M/M/1 feedback queue (see[20])
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5. Some Probability Measures

In this section we obtain the moments related to the steady state system
size probabilities.

Theorem 7. For ν > 0 and η > 0, the steady state probability generating

function Π(s) is given by

Π(s) =
Qρ(1− s) + (1− ρ)

(1− ρs)
.

The mean, variance of the system size namely E(N), V (N) and the mean of

the queue size E(Nq) are obtained as

E(N) =
ρ(1−Q)

1− ρ
(22)

V (N) =
ρ(1−Q)(1 + ρQ)

(1− ρ)2
(23)

and E(Nq) =
(1 −Q)ρ2

1− ρ
(24)

We define the steady state probability generating function Π(s) as

Π(s) = (Q+ π0) +

∞
∑

n=1

πns
n

Substituting the values of Q,π0 and πn from equations (19),(20) and (21) and
after simplification we get

Π(s) =
Qρ(1− s) + (1− ρ)

(1− ρs)

Let E(N), V (N) denote the mean and variance of the steady state system size.
They are obtained by taking the derivatives of Π(s) with respect to s and setting
s = 1. Now

E(N) = lim
s→1

Π′(s) =
ρ(1−Q)

1− ρ

E(N2) = lim
s→1

Π′′(s) + lim
s→1

Π′(s)

=
2ρ2(1−Q)

(1− ρ)2
+

ρ(1−Q)

1− ρ
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Since V (N) = E(N2) − E(N)2, substituting the values of E(N), E(N2) and
after some simplification we get

V (N) =
ρ(1−Q)(1 + ρQ)

(1− ρ)2

Let E(Nq) denotes mean of the stationary queue size. Since

E(Nq) =

∞
∑

n=1

(n− 1)πn

substituting the values of πn, n = 1, 2, ... and after some algebra we see that

E(Nq) =
(1−Q)ρ2

1− ρ

Note 1. The mean number of customers in the system E(N) includes the
repair time and idle time when there are no customers in the system.

P (Server is busy) =
∞
∑

n=1

πn = (1−Q)ρ

P (Server is Idle or Under Repair) = π0 +Q = 1− ρ(1−Q)

P (Server is Busy/Server is up) =
(1−Q)ρ

(1−Q)
= ρ

P (Server is Idle/Server is up) =
π0

1−Q
= 1− ρ

Theorem 8. For ν > 0 and η > 0, under steady state, the system

throughput U is given as

U =
η

η + ν
ρqµ

where ρ is given by the equation (21)

Proof. The system throughput U , is the rate at which customers exit the
queue whenever there are one or more customers in the system. With the exit
rate qµ, we have

U =
[

1− (π0 +Q)
]

qµ

by using equations (19) and (20) we obtain the result.
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6. Busy Period Analysis

According to our model, we define a busy period as the interval of time com-
mencing at the instant 0 when a customer arrives at an empty system and
terminating at the instant when the server becomes free for the first time or
the interval of time commencing at the instant 0 when a customer arrives at an
empty system and terminating at the instant when the server breaks down while
in operation. Let the length of the interval which is a random variable be T and
{N∗(t)} be the stochastic process denoting the number of customers present at
the instant t during the busy period. We have {N∗(0) = 1} and the duration
of the busy period is the first passage time from state 1 to state 0 or from state
1 to the repair state. Let qn(t) = P{N∗(t) = n/N∗(0) = 1}, n = 1, 2, .... be
the zero avoiding state probabilities. Then q1(0) = 1, qn(0) = 0 n = 2, 3, ....
Now qn(t) will satisfy the following differential difference equations.

Figure 2: State Transition Diagram for Busy Period

q′1(t) = −(λ+ qµ+ ν)q1(t) + qµq2(t)

q′n(t) = −(λ+ qµ+ ν)qn(t) + λqn−1(t) + qµqn+1(t) n = 2, 3, . . .

We solve the above system of equations using continued fraction technique as
discussed in the earlier section, the solutions for the above equations are given
by

qn(t) =

(

λ

qµ

)

n
2 1

λ
e−(λ+qµ+ν)tn

In(2
√
λqµt)

t
n = 1, 2, 3, ...

We shall now obtain the probability density function b(t) of the busy period.
Conditioning on the number of customers present at the instant t, we consider
two cases
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Case I: Considering the termination of busy period due to service completion
results in

b(t)dt = P{t ≤ T < t+ dt}

=
∞
∑

n=1

P{t ≤ T < t+ dt/N∗(t) = n}P{N∗(t) = n}

= P{t ≤ T < t+ dt/N∗(t) = 1}P{N∗(t) = 1}

+

∞
∑

n=2

P{t ≤ T < t+ dt/N∗(t) = n}P{N∗(t) = n}

The first term implies that there is only one customer at the instant t whose
service is completed between (t, t + dt),the probability of this event being
qµdt+ ◦(dt). The second term implies that service completion of two or more
customers in (t, t+ dt) and the probability of this event is ◦(dt).
Case II: Considering the termination of busy period due to the occurrence of
catastrophe results in

b(t)dt = P{t ≤ T < t+ dt}

=

∞
∑

n=1

P{t ≤ T < t+ dt/N∗(t) = n}P{N∗(t) = n}

=

∞
∑

n=1

(νdt+ ◦(dt))P{N∗(t) = n}

This is because the occurrence of catastrophe at the server is independent of
the number of customers in the system and the probability of occurrence of a
catastrophe in(t, t+ dt) is νdt+ ◦(dt).

Since completion of busy period is due to service completion of customers
at time t or due to the occurrence of catastrophe at time t. Thus taking limit
as dt → 0,we have

b(t) = qµq1(t) +

∞
∑

n=1

νqn(t)

= qµ
1√
λqµ

e−(λ+qµ+ν)t I1(2
√
λqµt)

t
+ ν

∞
∑

n=1

(

λ

qµ

)

n
2 1

λ
e−(λ+qµ+ν)t

× nIn(2
√
λqµt)

t
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Taking Laplace transform

b∗(z) =

(

w −
√

w2 − 4λqµ

2λ

)

+
ν

λ

∞
∑

n=1

(

w −
√

w2 − 4λqµ

2qµ

)n

where w = z + λ+ qµ+ ν

Taking the derivatives and evaluating at z = 0, we get mean of T

E(T ) = −db∗(z)

dz







z=0
=

1

2λ

(

w1 −
√

w2
1 − 4λqµ

√

w2
1 − 4λqµ

)

+
ν

λ

∞
∑

n=1

(

1

2qµ

)n

n

(

w1 −
√

w2
1 − 4λqµ

)n 1
√

w2
1 − 4λqµ

where w1 = λ+ qµ+ ν

E(T 2) =
d2b∗(z)

dz2







z=0
=

1

2λ

4λqµ

(w2
1 − 4λqµ)

3
2

+
ν

λ

∞
∑

n=1

(

1

2qµ

)n

n

(

w1 −
√

w2
1 − 4λqµ

)n (n
√

w2
1 − 4λqµ+ w1)

(

w2
1 − 4λqµ

)

3
2

where w1 = λ+ qµ+ ν

Now variance of T is

V (T ) = E(T 2)− E(T )2

=
8λ2qµ−

(

w1 −
√

w2
1 − 4λqµ

)2√
w2
1 − 4λqµ

4λ2(w2
1 − 4λqµ)

3
2

+
ν

λ

∞
∑

n=1

(

1

2qµ

)n

n

(

w1 −
√

w2
1 − 4λqµ

)n (n
√

w2
1 − 4λqµ +w1)

(

w2
1 − 4λqµ

)

3
2

−
(

ν

λ

)2 1

w2
1 − 4λqµ

∞
∑

n=1

∞
∑

k=1

nk

(

1

2qµ

)n+k (

w1 −
√

w2
1 − 4λqµ

)n+k

− ν

λ2

1

w2
1 − 4λqµ

∞
∑

n=1

n

(

1

2qµ

)n (

w1 −
√

w2
1 − 4λqµ

)n+1

where w1 = λ+ qµ+ ν
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7. Reliability Analysis

The reliability of the system is defined as the probability that the system con-
tinues to work with efficiently, over a given period of time, subject to the given
environmental conditions. The availability may be interpreted as the probabil-
ity that the system is operational at a given point of time or the fraction of
the test interval in which it is performing. Let A(t) be the probability that the
system is available at time t. Then, from (16) we obtain the point availability
as

A(t) = 1−Q(t)

=
η

η + ν
+

ν

η + ν
e−(η+ν)t (25)

The average availability of the system in [0, t] is

Ā(t) =
1

t

∫ t

0
A(u)du

=
η

η + ν
+

ν

(η + ν)2
1

t

(

1− e−(η+ν)t

) (26)

If η = 0,then from (16) we get

Q(t) = 1− e−νt

So the Reliability function R(t) of the system is given by

R(t) = 1−Q(t) = e−νt

the mean time to system failure (MTTF) is given by

MTTF =

∫ ∞

0
R(t)dt =

1

ν

Maintainability M(t) of the system is the probability that the system will
be repaired within time t. If T is a random variable representing the repair
time, then

M(t) = P (T ≤ t)

Since repair time is exponentially distributed with parameter η, then the repair
density function is g(t) = ηe−ηt and therefore

M(t) = P (T ≤ t) =

∫ t

0
ηe−ηudu = 1− e−ηt
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The expected value of repair time is called the mean time to repair (MTTR)
and is given by

MTTR =

∫ ∞

0
tg(t)dt =

∫ ∞

0
ηte−ηt =

1

η

From equation (25) the steady state or long run availability of the system is

A = A(∞) = lim
t→∞

A(t) =
η

η + ν

Also from equation (26)

lim
t→∞

Ā(t) =
η

η + ν

Hence

A =
η

η + ν
=

1
ν

1
ν
+ 1

η

=
MTTF

MTTF +MTTR
= lim

t→∞
Ā(t)

i.e., in long run the point availability is equivalent to average availability.

8. Numerical Illustrations

In this section we visualize how the system parameters influence the results we
have derived in Sections 4 and 5. Fig.3 shows that as λ increases the empty prob-
ability of the system π0 decreases as expected.It is also evident that when the
probability q increases, π0 correspondingly have higher values. Fig.4 describes
that as catastrophe rate ν increases the probability of the system becoming
empty also increases. In this situation we can also note that as the arrival
rate λ increases, π0 relatively diminishes. Fig.5 reads that as the incoming of
catastrophe increases in the system, the average number of customers E(N)
in the system dwindles. At the same time as λ increases relatively E(N) also
increases. Fig.6 demonstrates as the arrival rate increases the mean number in
the system also increases. This figure also reflects that as ν decreases E(N)
increases, as expected. Figures 7,8 and 9 give the details of the system perfor-
mance, namely throughput, against the parameters, ν, λ and µ. Clearly it is
evident that throughput U is the increasing function of λ and µ and it is the
decreasing function of ν.
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Figure 3: The effect of λ on π0
L1: µ = 5; ν = 1; q = 0.6; η = 0.7;
L2: µ = 5; ν = 1; q = 0.7; η = 0.8;
L3: µ = 5; ν = 1; q = 0.8; η = 0.9;

Figure 4: The effect of ν on π0
L1:λ = 4;µ = 6; q = 0.3; η = 150;
L2:λ = 5;µ = 6; q = 0.3; η = 175;
L3:λ = 6;µ = 6; q = 0.3; η = 200;

Figure 5: The Influence of ν on
E(N)

L1:λ = 4;µ = 5; q = 0.5; η = 100;
L2:λ = 6;µ = 5; q = 0.5; η = 150;
L3:λ = 7;µ = 5; q = 0.5; η = 175;

Figure 6: The Influence of λ on
E(N)

L1: µ = 5; ν = 4; q = 0.7; η = 150;
L2:µ = 5; ν = 3; q = 0.8; η = 175;
L3:µ = 5; ν = 2; q = 0.9; η = 200;
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Figure 7: The Influence of ν on
the system throughput U

L1:λ = 3;µ = 5; q = 0.3; η = 60;
L2:λ = 5;µ = 4; q = 0.3; η = 100;
L3:λ = 6;µ = 5; q = 0.3; η = 75;

Figure 8: The Influence of λ on
the system throughput U

L1: ν = 2;µ = 5; q = 0.4; η = 90;
L2: ν = 3;µ = 6; q = 0.3; η = 75;
L3: ν = 3;µ = 7; q = 0.3; η = 100;

Figure 9: The Influence of µ on
the system throughput U
L1:λ = 5; ν = 2; q = 0.5; η = 50;
L2:λ = 6; ν = 3; q = 0.6; η = 75;
L3:λ = 6; ν = 2; q = 0.6; η = 90;

References

[1] N.T.J. Bailey, A continuous time treatment of a simple queue using gen-
erating functions, J.R.S.S.B, 16 (1954), 288-291.

[2] D.C. Chambernowne, An elementary method of solution of the queueing



624 V.M. Chandrasekaran, M.C. Saravanarajan

problem with a single server and a constant parameter, J.R.S.S.B, 18
(1956), 125-128.

[3] B.W. Conolly, A difference equation technique applied to the simple queue
with arbitrary arrival interval distribution, J.R.S.S.B, 21 (1958), 268-275.

[4] G.R. D’Avigon, R.L. Disney, Single server queues with state dependent
feedback, INFOR, 4 (1976), 71-85.

[5] R.L. Disney, D.C. McNickle, B. Simon, The M/G/1 queue with instanta-
neous bernoulli feedback, Nav. Res. Log. Quat, 27 (1980), 633-644.

[6] Donald Gross, Carl M. Harris, Fundamentals of Queueing Theory, John
Wiley & Sons, Inc. (2003).

[7] P. Flajolet, F. Guillemin, The formal theory of birth and death processes,
lattice path combinatorics, and continued fractions, Adv. Appl. Prob., 32
(2000), 750-778.

[8] W.B. Jones, W.J.Thron, Continued fractions: Analytic theory and ap-
plications, Encyclopedia of Mathematics and its applications,II, Addison
Wesley, Newyork, (1980).

[9] B. Krishna Kumar, D. Arivudainambi, Transient Solution of an M/M/1
Queue with Catastrophes, Computers & Mathematics with applications,
40 (2000), 1233-1240.

[10] B. Krishna Kumar, S. Pavai Madheswari, A.Vijayakumar, The M/G/1
retrial queue with feedback and starting failures, Applied Mathematical
Modelling, 26 (2002), 1057 - 1075.

[11] B. Krishna Kumar, S. Pavai Madheswari, Transient analysis of an M/M/1
queue subject to catastrophes and server failures, Stochastic Analysis and
Applications, 23 (2005), 329-340.

[12] B. Krishna Kumar, A. Krishnamoorthy, S. Pavai Madheswari, S.
Sadiq Basha, Transient Analysis of Single Server Queue with Catastro-
phes,Failures and Repairs, Queueing Systems, 56 (2007), 133-141.

[13] V. Lederman, G.E. Reuter, Spectrol theory for the differential equations
of simple birth and death process, Phil. Trans. Roy. Soc., 246 (1956),
321-369.



TRANSIENT AND RELIABILITY ANALYSIS OF M/M/1... 625

[14] J. Medhi, Stochastic Models in Queueing Theory, California: Academic
Press,(2006).

[15] J.A. Murphy, M.R. O’Donohoe, Properties of continued fractions with ap-
plications in Markov processes, J.Inst. Maths. Appl., 11 (1975), 345-354.

[16] P.R. Parthasarathy, R.B. Lenin, An inverse problem in birth and death
processes, Comput. Math. Appl., 38 (1999), 33-40.

[17] P.R. Parthasarathy, N.Selvaraju, Transient analysis of a queue where po-
tential customers are discouraged by queue length, Math. Prob. Eng., 7
(2001), 433-454.

[18] P.R. Parthasarathy, K.V. Vijayashree, R.B. Lenin, An M/M/1 driven fluid
queue, Continued fraction approach, Queueing Systems, 42 (2002), 189-
199.

[19] P.R. Parthasarathy, A transient solution to an M/M/1 queue: a simple
approach, Adv. Appl. Prob., 19 (1987), 997-998.

[20] L. Takacs, A single server queue with feedback, The Bell System Tech.
Journal, 42 (1963), 134-149.

[21] V. Thangaraj, S. Vanitha, M/M/1 queue with feedback a continued frac-
tion approach, International Journal of Computational and Applied Math-
ematics, 5 (2010), 129-139.

[22] V. Thangaraj, S. Vanitha, On the analysis of M/M/1 feedback queue with
catastrophes using continued fractions, International Journal of Pure and
Applied Mathematics, 53 (2009), 133-151.

[23] D.V. Widder, The Laplace Transform, Princeton: Princeton University
Press, (1946).



626


