ONCE MORE ON THE GRACEFULNESS OF
THE DIGRAPHS $n - \vec{C}_m$

Zhao Lingqi1, Feng Wei2 §

1College of Computer Science and Technology
Inner Mongolian University for Nationalities
Tongliao, 028043, P.R. CHINA

2College of Mathematics
Inner Mongolian University for Nationalities
Tongliao, 028043, P.R. CHINA

Abstract: A digraph $D(V, E)$ is said to be graceful if there exists an injection $f : V(D) \rightarrow \{0, 1, \ldots, |E|\}$ such that the induced function $f' : E(D) \rightarrow \{1, 2, \ldots, |E|\}$ which is defined by $f'(u, v) = [f(v) - f(u)] \pmod{|E| + 1}$ for every directed edge (u, v) is a bijection. Here, f is called a graceful labeling (graceful numbering) of digraph $D(V, E)$, and f' is called the induced edge’s graceful labeling of digraph $D(V, E)$. In this paper we discuss the gracefulness of the digraph $n - \vec{C}_m$ and prove the digraph $n - \vec{C}_{19}$ is graceful for even n with more regular labeling than [9].

Key Words: digraph, directed cycles, graceful graph, graceful labeling

1. Introduction

A graph $G(V, E)$ is said to be graceful if there exists an injection $f : V(G) \rightarrow \{0, 1, \ldots, |E|\}$ such that the induced function $f' : E(G) \rightarrow \{1, 2, \ldots, |E|\}$ which is defined by $f'(u, v) = |f(u) - f(v)|$ for every edge (u, v) is a bijection. Here,
f is called a graceful labeling (graceful numbering) of G, while f' is called the induced edge’s graceful labeling of G. A digraph $D(V,E)$ is said to be graceful if there exists an injection $f: V(D) \to \{0,1,\cdots,|E|\}$ such that the induced function $f': E(D) \to \{1,2,\cdots,|E|\}$ which is defined by $f'(u,v) = [f(v) - f(u)] \pmod{|E| + 1}$ for every directed edge (u,v) is a bijection, where $[v] \pmod{n}$ denotes the least positive residue of v modulo n. And, for any integers $a \leq b$, let $[a,b]$ denote the set of all consecutive integers from a to b. Let \bar{C}_m denote the directed cycle on m vertices, $n - \bar{C}_m$ denote the graph obtained from any n copies of \bar{C}_m which have just one common edge. Digraph $n - \bar{C}_m$ has a potential application in the password and network. In [3], Ma has showed that $n - \bar{C}_3$ is a graceful graph. Xu has proved that $n - \bar{C}_m$ is a graceful digraph for $m = 4, 6, 8, 10$ and even n in [5]. In [6], Jirimutu put forward a conjecture and a problem as following:

Conjecture 1. For any positive even n and any integer $m \geq 14$, the digraph $n - \bar{C}_m$ is graceful.

Problem 1. For any positive odd n and any odd $m \geq 14$, whether the digraph $n - \bar{C}_m$ is graceful?

After, Zhao has proved that $n - \bar{C}_m$ is a graceful digraph for $m = 15$ and even n in [7], and for $m = 17$ and even n in [8], and for $m = 19$ and even n in [9], respectively. In this paper we discuss the gracefulness of the digraph $n - \bar{C}_m$ and prove the digraph $n - \bar{C}_{19}$ is graceful for even n with more regular labeling than[9].

Lemma 1. For any positive integer n, and $m \geq 3$, the necessary condition of the digraph $n - \bar{C}_m$ to be graceful is $nm \equiv 0 \pmod{2}$.

Lemma 2. If $nm \equiv 1 \pmod{2}$, then the digraph $n - \bar{C}_m$ is not graceful.

Lemma 3. If the digraph $n - \bar{C}_m$ is graceful, then $f(v_0) = 0$ and $f(v_{m-1}) = \frac{q+1}{2}$ (v_0 and v_{m-1} are two vertices of common edge).

2. Main Results

Theorem 1. For any positive even n, the digraph $n - \bar{C}_{19}$ is graceful.

Proof. Let $\bar{C}_{19}^1, \bar{C}_{19}^2, \cdots, \bar{C}_{19}^n$ denote the n directed cycles of $n - \bar{C}_{19}$. Two vertices of common edge of $n - \bar{C}_{19}$ are denoted by v_0 and v_{18}, respectively. Other 17 vertices of $n - \bar{C}_{19}$ is denoted by v_j^i for $j = [1, 17]$ and $i = [1, n]$. For convenience, we put $v_0^1 = v_0^2 = \cdots = v_0^n = v_0$, $v_{18}^1 = v_{18}^2 = \cdots = v_{18}^n = v_{18}$, and
take subscripts j’s modulo 19. Based on such notations, we define the vertex label f of $n - \overline{C}_{19}$ as follows:

\[
f(v_0) = 0, \ f(v_{18}) = 9n + 1
\]

\[
f(v_j^i) = \begin{cases}
\frac{j-1}{2}n + i & j = 1, 3, 5, i = 1, 2, \cdots, n \\
(2j + \lfloor \frac{j}{2} \rfloor)n + 1 - i & j = 2, 4, i = 1, 2, \cdots, n \\
11n + 2 - i & j = 6, i = 1, 2, \cdots, n \\
4n + i & j = 7, i = 1, 2, \cdots, n \\
15n + 3 - i & j = 8, i = 1, 2, \cdots, n \\
(j + 4)n + \frac{j-7}{2} + i & j = 9, 11, i = 1, 2, \cdots, n \\
17n + 3 - i & j = 10, i = 1, 2, \cdots, n \\
12n + 2 - i & j = 12, i = 1, 2, \cdots, n \\
3n + i & j = 13, i = 1, 2, \cdots, n \\
7n + 1 - i & j = 14, i = 1, 2, \cdots, n \\
12n + 1 + i & j = 15, i = 1, 2, \cdots, n \\
7n + i & j = 17, i = 1, 2, \cdots, n
\end{cases}
\]

\[
f(v_j^i) = \begin{cases}
10n + 1 - i & j = 16, i = 1, 2, \cdots, \frac{n}{2} \\
18n + 3 - i & j = 16, i = \frac{n}{2} + 1, \frac{n}{2} + 2, \cdots, n
\end{cases}
\]

Firstly, we show that f is an injective mapping from $V(n - \overline{C}_{19})$ into $[0, 18n + 1]$.

For $j \in [0, 18]$, put $S_j = \{ f(v_j^i) | i \in [1, n] \}$, and set $S_{j, 1} = \{ f(v_j^i) | i \in [1, \frac{n}{2}] \}, S_{j, 2} = \{ f(v_j^i) | i \in [\frac{n}{2} + 1, n] \}$. Then:

- $S_0 = \{ f(v_0) \} = \{ 0 \}$,
- $S_1 = \{ f(v_1^i) \} = \{ 1, 2, \cdots, n \}$,
- $S_3 = \{ f(v_3^i) \} = \{ n + 1, n + 2, \cdots, 2n \}$,
- $S_5 = \{ f(v_5^i) \} = \{ 2n + 1, 2n + 2, \cdots, 3n \}$,
- $S_{13} = \{ f(v_{13}^i) \} = \{ 3n + 1, 3n + 2, \cdots, 4n \}$,
- $S_7 = \{ f(v_7^i) \} = \{ 4n + 1, 4n + 2, \cdots, 5n \}$,
- $S_2 = \{ f(v_2^i) \} = \{ 6n, \cdots, 5n + 2, 5n + 1 \}$,
- $S_{14} = \{ f(v_{14}^i) \} = \{ 7n, \cdots, 6n + 2, 6n + 1 \}$,
- $S_{17} = \{ f(v_{17}^i) \} = \{ 7n + 1, 7n + 2, \cdots, 8n \}$,
\[S_4 = \{ f(v^4_i) \} = \{ 9n, \ldots, 8n + 2, 8n + 1 \}, \]
\[S_{18} = \{ f(v^1_{18}) \} = \{ 9n + 1 \}, \]
\[S_{16,1} = \{ f(v^i_{16}) \} = \{ 10n, \ldots, 9n + \frac{n}{2} + 2, 9n + \frac{n}{2} + 1 \}, \]
\[S_6 = \{ f(v^6_i) \} = \{ 11n + 1, \ldots, 10n + 3, 10n + 2 \}, \]
\[S_{12} = \{ f(v^i_{12}) \} = \{ 12n + 1, \ldots, 11n + 3, 11n + 2 \}, \]
\[S_{15} = \{ f(v^i_{15}) \} = \{ 12n + 2, 12n + 3, \ldots, 13n + 1 \}, \]
\[S_9 = \{ f(v^9_i) \} = \{ 13n + 2, 13n + 3, \ldots, 14n + 1 \}, \]
\[S_8 = \{ f(v^8_i) \} = \{ 15n + 2, \ldots, 14n + 4, 14n + 3 \}, \]
\[S_{11} = \{ f(v^i_{11}) \} = \{ 15n + 3, 15n + 4, \ldots, 16n + 2 \}, \]
\[S_{10} = \{ f(v^i_{10}) \} = \{ 17n + 2, \ldots, 16n + 4, 16n + 3 \}, \]
\[S_{16,2} = \{ f(v^i_{16}) \} = \{ 17n + \frac{n}{2} + 2, \ldots, 17n + 4, 17n + 3 \}. \]

It is obvious that \(S_i \cap S_j = \emptyset \) for \(i, j \in [0, 18] \), \(i \neq j \), which yields that \(f \) is an injection from \(V(n - \tilde{C}_19) \) into \([0, 18n + 1]\).

Secondly, we show the induced edges labeling \(f' \) is a bijection from \(E(n - \tilde{C}_19) \) onto \([1, 8n + 1]\). Set \([f(v^i_j) - f(v^i_{j-1})] = f(v^i_j) - f(v^i_{j-1}) \pmod{18n + 2} \). Denote \(B_j = B_{j,1} \cup B_{j,2} \), where

\[
\begin{align*}
B_{j,1} &= \{ [f(v^i_j) - f(v^i_{j-1})]|j \in [0, 18]; i \in [1, \frac{n}{2}] \} \\
B_{j,2} &= \{ [f(v^i_j) - f(v^i_{j-1})]|j \in [0, 18]; i \in [\frac{n}{2} + 1, n] \};
\end{align*}
\]

and let \(B = \bigcup_{j=1}^{18} B_j \). Then, in order to prove that \(f' \) is a bijection, it suffices to show \(B = [1, 18n + 1] \), or \([1, 18n + 1] \subseteq B \) equivalently.

(1) For \(j = 1, 18, i \in [1, n] \). We have
\[B_1 \cup B_{18} = \{ 1, 2, \ldots, 2n \} = [1, 2n]. \]

(2) For \(j = 10, 14, i \in [1, n] \). We have
\[B_{10} \cup B_{14} = \{ 2n + 1, 2n + 2, \ldots, 4n \} = [2n + 1, 4n]. \]

which and (1) imply \([1, 4n] \subseteq B \).

(3) For \(j = 2, i \in [1, n]; j = 16, i \in [\frac{n}{2} + 1, n] \), and \(j = 15, i \in [1, \frac{n}{2}] \). We have
\[B_2 \cup B_{16,2} \cup B_{15,1} = \{ 4n + 1, 4n + 2, \ldots, 6n \} = [4n + 1, 6n]. \]
which and (2) imply $[1, 6n] \subseteq B$.

(4) For $j = 4, i \in [1, n]; j = 15, 6, i \in [\frac{n}{2} + 1, n]$. We have

$$B_4 \cup B_{15,2} \cup B_{6,2} = \{6n + 1, 6n + 2, \cdots, 8n\} = [6n + 1, 8n].$$

which and (3) imply $[1, 8n] \subseteq B$.

(5) For $j = 6, i \in [1, \frac{n}{2}], j = 17, i \in [\frac{n}{2} + 1, n]$, and $j = 0, i \in [1, n]$. We have

$$B_{6,1} \cup B_{17,2} \cup B_0 = \{8n + 1, 8n + 2, \cdots, 9n + 1\} = [8n + 1, 9n + 1].$$

which and (4) imply $[1, 9n + 1] \subseteq B$.

(6) For $j = 13, 8, i \in [1, n]$. We have

$$B_{13} \cup B_8 = \{9n + 2, 9n + 3, \cdots, 11n + 1\} = [9n + 2, 11n + 1].$$

which and (5) imply $[1, 11n + 1] \subseteq B$.

(7) For $j = 5, 7, i \in [1, n]$. We have

$$B_5 \cup B_7 = \{11n + 2, 11n + 3, \cdots, 15n + 1\} = [11n + 2, 13n + 1].$$

which and (6) imply $[1, 13n + 1] \subseteq B$.

(8) For $j = 12, 3, i \in [1, n]$. We have

$$B_{12} \cup B_3 = \{13n + 2, 13n + 3, \cdots, 15n + 1\} = [13n + 2, 15n + 1].$$

which and (7) imply $[1, 15n + 1] \subseteq B$.

(9) For $j = 16, 17, i \in [1, \frac{n}{2}]$, and $j = 11, 9, i \in [1, n]$. We have

$$B_{16,1} \cup B_{17,1} \cup B_{11} \cup B_9 = \{15n + 2, 15n + 3, \cdots, 18n + 1\} = [15n + 2, 18n + 1],$$

which and (8) imply $[1, 18n + 1] \subseteq B$.

So f' is a bijection, then $n - \tilde{C}_{19}$ is graceful for any positive even n. This completes the proof.
Acknowledgments

This research is supported by the projects of the Inner Mongolia Autonomous Region (No. 2010MS0112 and No. NJZY11198) and Inner Mongolia University for Nationalities fund (No. NMD1104). This research is supported by Institute for Discrete Mathematics of Inner Mongolia University for Nationalities.

References

[5] Xu Xirong, Jirimutu, On the gracefulness of the digraph $n - \overrightarrow{C}_m$ for $m = 4, 6, 8, 10$, *Ars Combinatoria*, 92 (2009), 419-428.

[7] Zhao Lingqi, Feng Wei, Jirimutu, On the gracefulness of the digraph $n - \overrightarrow{C}_m$, for $m = 15$, *Utilitas Mathematica*, 82 (2010), 129-134.

[8] Zhao Lingqi, Siqintuya, Jirimutu, On the gracefulness of the digraph $n - \overrightarrow{C}_m$, for $m = 17$, *Ars Combinatoria*, 99 (2011), 421-428.