PAIRWISE SEMI STAR GENERALIZED
\(\omega\)-CONTINUOUS FUNCTIONS

D. Narasimhan\(^1\)\(^\S\), K. Kannan\(^2\)
Department of Mathematics
Srinivasa Ramanujan Centre
SASTRA University
Kumbakonam, 612001, INDIA

Abstract: The aim of this short communication is to study some basic properties of pairwise \(s^*gw\)-continuous and pairwise \(s^*gw\)-irresolute mappings in bitopological spaces, that of introduced in topological spaces by K. Chandrasekhara Rao and D. Narasimhan [7] in unital topological spaces.

AMS Subject Classification: 54E55
Key Words: pairwise \(s^*gw\)-continuous, pairwise \(s^*gw\)-irresolute, pairwise \(gw\)-continuous, pairwise \(gw\)-irresolute

1. Introduction

Let \((X, \tau_1, \tau_2)\) or simply \(X\) denote a bitopological space. For any subset \(A \subseteq X\), \(\tau_i\)-\(int(A)\) and \(\tau_i\)-\(cl(A)\) denote the interior and closure of a set \(A\) with respect to the topology \(\tau_i\). The closure and interior with respect to the topology \(\tau_i\) of \(B\) relative to \(A\) is written as \(\tau_i\)-\(cl_B(A)\) and \(\tau_i\)-\(int_B(A)\) respectively. A point \(x \in X\) is called a condensation point of \(A\) if for each \(U \in \tau\) with \(x \in U\), the set \(U \cap A\) is uncountable. \(A\) is called \(w\)-closed if it contains all its condensation points. The complement of an \(w\)-closed set is called \(w\)-open. It is well known that a subset \(A\) of a space \((X, \tau)\) is \(w\)-open if and only if for each \(x \in A\), there exists \(U \in \tau\) such that \(x \in U\) and \(U \cap W\) is countable. The family of all \(w\)-open subsets of a space \((X, \tau)\), by \(\tau_w\) or \(wO(X)\), forms a topology on \(X\) finer than \(\tau\).

Received: April 17, 2012

\(^\S\)Correspondence author

© 2012 Academic Publications, Ltd.
url: www.acadpubl.eu
w-closure and w-interior with respect to the topology τ_i, that can be defined in a manner similar to τ_i-$cl(A)$ and τ_i-$int(A)$, respectively, will be denoted by τ_i-$cl_w(A)$ and τ_i-$int_w(A)$, respectively. A^C denotes the complement of A in X unless explicitly stated.

We shall require the following known definitions.

Definition 1.1. A set A of a bitopological space (X, τ_1, τ_2) is called

(a) $\tau_1\tau_2$-semi open if there exists an τ_1-open set U such that $U \subseteq A \subseteq \tau_2$-$cl(U)$,

(b) $\tau_1\tau_2$-semi closed if $X - A$ is $\tau_1\tau_2$-semi open.

equivalently, a set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$-semi closed if there exists a τ_1-closed set F such that τ_2-$int(F) \subseteq A \subseteq F$,

(c) $\tau_1\tau_2$-generalized closed ($\tau_1\tau_2$-g closed) if τ_2-$cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-open in X,

(d) $\tau_1\tau_2$-generalized open ($\tau_1\tau_2$-g open) if $X - A$ is $\tau_1\tau_2$-g closed,

(e) $\tau_1\tau_2$-semi star generalized closed ($\tau_1\tau_2$-s^g closed) if τ_2-$cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-semi open in X,

(f) $\tau_1\tau_2$-semi star generalized open ($\tau_1\tau_2$-s^g open) if $X - A$ is $\tau_1\tau_2$-s^g closed in X,

(g) $\tau_1\tau_2$-generalized w-closed ($\tau_1\tau_2$-gw closed) if τ_2-$cl_w(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-open in X,

(h) $\tau_1\tau_2$-generalized w-open ($\tau_1\tau_2$-gw open) if $X - A$ is $\tau_1\tau_2$-gw closed.

(i) $\tau_1\tau_2$-regular generalized w-closed ($\tau_1\tau_2$-rgw closed) if τ_2-$cl_w(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$-regular open in X,

(j) $\tau_1\tau_2$-regular generalized w-open ($\tau_1\tau_2$-rgw open) if $X - A$ is $\tau_1\tau_2$-rgw closed.

2. **Pairwise Semi Star Generalized w-Continuity**

For further study we shall go through the following.

Definition 2.1. A map $f : X \to Y$ is called
(a) pairwise gw-closed if image of a τ_j-w closed set in X is $\sigma_i\sigma_j$-gw closed in Y,

(b) pairwise rgw-closed if image of a τ_j-w closed set in X is $\sigma_i\sigma_j$-rgw closed in Y,

(c) pairwise pre w-closed if image of a τ_i-w closed set in X is σ_i-w closed in Y, $i = 1,2$,

(d) pairwise rgw-continuous if inverse image of a σ_j-w closed in Y is $\tau_i\tau_j$-rgw closed in X, $i, j = 1,2$ and $i \neq j$,

(e) pairwise gw-continuous if inverse image of a σ_j-w closed in Y is $\tau_i\tau_j$-gw closed in X, $i, j = 1,2$ and $i \neq j$,

(f) pairwise rgw-irresolute if the inverse image of $\sigma_i\sigma_j$-rgw closed set Y is $\tau_i\tau_j$-rgw closed in X, $i, j = 1,2$ and $i \neq j$.

Definition 2.2. A map $f : X \rightarrow Y$ is called

(a) pairwise s^*gw-continuous if the inverse image of σ_j-w closed set in Y is $\tau_i\tau_j$-s^*gw closed in X, $i, j = 1,2$, $i \neq j$.

(b) pairwise s^*gw-irresolute if the inverse image of $\sigma_i\sigma_j$-s^*gw closed set in Y is $\tau_i\tau_j$-s^*gw closed in X, $i, j = 1,2$, $i \neq j$.

Concerning composition of functions, we observe the following results.

Theorem 2.3.
(a) The composition of two pairwise s^*gw-irresolute functions is pairwise s^*gw-irresolute.

Equivalently, If f, g are pairwise s^*gw-irresolute, then gof is also pairwise s^*gw-irresolute.

(b) If f is pairwise s^*gw-irresolute and g is pairwise s^*gw-continuous, then gof is also pairwise s^*gw-continuous.

Proof. (a) Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \mu_1, \mu_2)$ be two pairwise s^*gw-irresolute functions. Let V be a $\mu_i\mu_j$-s^*gw closed in Z, $i, j = 1,2$, $i \neq j$. Since g is pairwise s^*gw-irresolute, we have $g^{-1}(V)$ is $\sigma_i\sigma_j$-s^*gw closed in Y. Since f is pairwise s^*gw-irresolute, we have $f^{-1}[g^{-1}(V)] = (gof)^{-1}$ is $\tau_i\tau_j$-s^*gw closed in X. Therefore, gof is pairwise s^*gw-irresolute.

The proof of (b) is similar. \qed
The composition of two pairwise s^*gw-continuous functions is not pairwise s^*gw-continuous.

Theorem 2.4. a) Every pairwise s^*gw-continuous function is pairwise gw-continuous,

b) Every pairwise s^*gw-continuous function is pairwise rgw-continuous.

Proof. (a) Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise s^*gw-continuous function. Let V be a σ_j-w closed set in Y. Since f is a pairwise s^*gw-continuous function, we have $f^{-1}(V)$ is $\tau_i\tau_j$-s^*gw closed in X, $i, j = 1, 2, i \neq j$. Since every $\tau_i\tau_j$-s^*gw closed set is $\tau_i\tau_j$-gw closed, we have $f^{-1}(V)$ is $\tau_i\tau_j$-gw closed in X. Therefore, f is pairwise gw-continuous.

The proof of (b) is similar. \hfill \square

Definition 2.5. A space (X, τ_1, τ_2) is a pairwise semi star generalized w-$T_{1/2}$ [6] (simply, pairwise s^*gw-$T_{1/2}$) if every $\tau_i\tau_j$-s^*gw closed set in (X, τ_1, τ_2) is τ_2-w closed and $\tau_2\tau_1$-s^*gw closed set in (X, τ_1, τ_2) is τ_1-w closed.

The next theorem shows that pairwise s^*gw-$T_{1/2}$ spaces are preserved under pairwise s^*gw-irresolute map if it is also a pairwise pre w-closed map.

Theorem 2.6. Let $f : X \to Y$ be onto pairwise s^*gw-irresolute and pairwise pre w-closed map. If X is pairwise s^*gw-$T_{1/2}$ then Y is also pairwise s^*gw-$T_{1/2}$.

Proof. Let A be $\sigma_i\sigma_j$-s^*gw closed subset of Y, $i, j = 1, 2, i \neq j$. Since f is pairwise s^*gw-irresolute map, $f^{-1}(A)$ is $\tau_i\tau_j$-s^*gw closed subset of X. Since X is a pairwise s^*gw-$T_{1/2}$ space, $f^{-1}(A)$ is τ_j-w closed in X. Since f is pairwise pre w-closed, $f[f^{-1}(A)] = A$ is σ_j-w closed in Y. Therefore, Y is pairwise s^*gw-$T_{1/2}$ space. \hfill \square

Theorem 2.7. a) Every pairwise s^*gw-closed function is pairwise gw-closed,

b) Every pairwise s^*gw-closed function is pairwise rgw-closed.

Proof. (a) Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise s^*gw-closed function. Let V be a τ_j-w closed set in X. Since f is a pairwise s^*gw-closed function, we have $f(V)$ is $\sigma_i\sigma_j$-s^*gw closed in Y, $i, j = 1, 2, i \neq j$. Since every pairwise s^*gw-closed set is $\sigma_i\sigma_j$-gw closed, we have $f(V)$ is $\sigma_i\sigma_j$-gw closed in Y. Therefore, f is pairwise gw-closed.

The proof of (b) is similar. \hfill \square
Since every τ_j-w closed set is $\tau_i\tau_j$-s^*gw closed, we have the following theorem.

Theorem 2.8. Every pairwise s^*gw-irresolute map is pairwise s^*gw-continuous map.

References

