International Journal of Pure and Applied Mathematics

Volume 78 No. 8 2012, 1211-1220

ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu

ON BE-HOMOMORPHISMS OF BE-SEMIGROUPS

A.H. Handam

Department of Mathematics Al Al-Bayt University P.O. Box 130095, Al Mafraq, JORDAN

Abstract: In this paper, we introduce the notion of BE-homomorphism between BE-semigroups, and investigate some of their properties. Also, we establish construct the quotient self-distributive BE-semigroup via deductive system, and we have the fundamental theorem of homomorphisms for self-distributive BE-semigroups as a consequence.

AMS Subject Classification: 06F35, 06E10, 08A30

Key Words: BE-semigroup, BE-homomorphism, deductive system, self-distributive

1. Introduction

Imai and Iséki introduced two classes of abstract algebras, namely, BCK-algebras and BCI-algebras [4], [5]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [9], Neggers and Kim introduced the notion of d-algebras which is a generalization of BCK-algebras. Moreover, Jun et al [9] introduced a new notion, called a BH-algebra, which is a generaliza-

Received: June 24, 2012

© 2012 Academic Publications, Ltd. url: www.acadpubl.eu

tion of BCK/BCI-algebras. Recently, another generalization of BCK-algebras, the notion of a BE-algebra is introduced by Kim and Kim [8]. They provided an equivalent condition of the filters in BE-algebras using the notion of upper sets. In [2], [3], Ahn and So introduced the notion of ideals in BE-algebras and proved several characterizations of such ideals. In [1], Ahn and Kim combined BE-algebras and semigroups and introduced the notion of BE-semigroups. In this paper, we introduce the notion of BE-homomorphism of BE-semigroups, and investigate some of their properties. In addition, the notion of quotient self-distributive BE-semigroups is introduced.

2. Preliminaries

In this section, we cite some elementary aspects that will be used in the sequel of this paper.

Definition 2.1. (see [8]) An algebra (X, *, 1) of type (2, 0) is called a BE-algebra if:

 $(BE1) \ x * x = 1 \text{ for all } x \in X,$ $(BE2) \ x * 1 = 1 \text{ for all } x \in X,$ $(BE3) \ 1 * x = x \text{ for all } x \in X,$ $(BE4) \ x * (y * z) = y * (x * z) \text{ for all } x, y, z \in X.$

We can define a relation " \leq "on X by $x \leq y$ if and only if x * y = 1. In an BE-algebra, the following identities are true (see [8]):

$$(a1) \ x * (y * x) = 1.$$

 $(a2) \ x * ((x * y) * y)) = 1.$

Definition 2.2. (see [8]) A BE-algebra (X, *, 1) is said to be self-distributive if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

Definition 2.3. (see [2]) A BE-algebra (X; *, 1) is said to be transitive if for any $x, y, z \in X$, $y * z \le (x * y) * (x * z)$.

Proposition 2.4. (see [2]) If X is a self-distributive BE-algebra, then it is transitive.

Definition 2.5. (see [10]) Let X, Y be two BE-algebras. A mapping $\psi : X \to Y$ is called a homomorphism from X into Y if for any $x, y \in X$, $\psi(x * y) = \psi(x) * \psi(y)$ holds.

Definition 2.6. (see [1]) An algebraic system $(X; \odot, *, 1)$ is called a BEsemigroup if it satisfies the following: (I) $(X; \odot)$ is a semigroup,

(II) (X; *, 1) is a BE-algebra,

(III) the operation " \odot " is distributive (on both sides) over the operation "*", that is,

$$x \odot (y * z) = (x \odot y) * (x \odot z) \text{ and } (x * y) \odot z = (x \odot z) * (y \odot z) \text{ for all}$$
$$x, y, z \in X.$$

Proposition 2.7. (see [1]) Let $(X; \odot, *, 1)$ be a *BE*-semigroup. Then (*i*) $(\forall x \in X)$ $(1 \odot x = x \odot 1 = 1)$,

 $(ii) \ (x, y, z \in X) \ (x \le y \Rightarrow x \odot z \le y \odot z, z \odot x \le z \odot y).$

Definition 2.8. (see [1]) An element $a \neq 1$ in a BE-semigroup $(X; \odot, *, 1)$ is said to be a left (resp. right) unit divisor if

$$(\exists b \neq 1) \in X) \ (a \odot b = 1 \text{ (resp. } b \odot a = 1))$$

A unit divisor is an element of X which is both a left and a right unit divisors.

Definition 2.9. (see [1]) Let $(X; \odot, *, 1)$ be a BE-semigroup. A nonempty subset D of X is called a left (resp. right) deductive system if it satisfies:

 $(ds1) X \odot D \subseteq D$ (resp. $(D \odot X \subseteq D)$),

 $(ds2) \ (\forall a \in D) \ ((\forall x \in X) \ (a * x \in D \Rightarrow x \in D).$

Both left and right deductive system is a two sided deductive system or simply deductive system.

Example 2.10. (see [1]) Let $X = \{1, x, y, z\}$ be the set with the following Cayley tables:

\odot	1	x	y	z	*	1	x	y	z
1	1	1	1	1	1	1	x	y	z
x	1	x	1	1	x	1	1	y	z
y	1	1	y	z	y	1	1	1	z
z	1	1	z	y	z	1	1	1	1

Then $(X; \odot, *, 1)$ is a BE-semigroup. It is easy to show that $D = \{1, x\}$ is a deductive system of X.

Definition 2.11. A BE-semigroup $(X; \odot, *, 1)$ is said to be self-distributive BE-semigroup if X is self-distributive BE-algebra.

3. Main Results

In this section we generalize the notion of a mapping from one BE-semigroup X into another BE-semigroup Y. Thus we define a BE-homomorphism in a usual way.

Definition 3.1. Let X and Y be two BE-semigroups. A mapping ψ : $X \to Y$ is called a BE-homomorphism if for all $a, b \in X$, $\psi(a * b) = \psi(a) * \psi(b)$ and $\psi(a \odot b) = \psi(a) \odot \psi(b)$.

A BE-homomorphism ψ is called a BE-monomorphism (resp. BE-epimorphism) if it is injective (resp. surjective). A bijective BE-homomorphism is called a BE-isomorphism. For any BE-homomorphism $\psi : X \to Y$, the set $\{x \in X \mid \psi(x) = 0\}$ is called the kernel of ψ , denoted by $Ker(\psi)$ and the set $\{\psi(x) \mid x \in X\}$ is called the image of ψ , denoted by $Im(\psi)$. We denote by Hom(X, Y) the set of all BE-homomorphisms of BE-semigroups from X to Y.

In what follows let X and Y be BE-semigroups unless otherwise specified.

Example 3.2. Let $X = \{1, a, b, c\}$ and $Y = \{1, x, y, z\}$ be sets with cayley tables as follows:

\odot	1	a	b	c		*	1	a	b	c		\odot	1	x	y	z
1	1	1	1	1	-	1	1	a	b	С	-	1	1	1	1	1
a	1	1	1	1		a	1	1	b	c		x	1	1	1	1
b	1	1	1	1		b	1	a	1	c		y	1	1	1	y
c	1	a	b	c		c	1	1	1	1		z	1	1	y	z
·						*	1	x	y	z			-			
						1	1	x	y	z						
						x	1	1	y	z						
						y	1	x	1	z						
						z	1	1	1	1						

Then $(X; \odot, *, 1)$ and $(Y; \odot, *, 1)$ are BE-semigroups (see [1], Example 3.2). Define a map $\psi : X \to Y$ by

$$\psi(x) = \begin{cases} 1, & \text{if } x = 1, a, b \\ z, & \text{if } x = c \end{cases}$$

Then it is easy to check that ψ is a BE-homomorphism from X into Y.

Proposition 3.3. Suppose that $\psi : X \to Y$ is a BE-homomorphism of BE-semigroups. Then

(1) $\psi(1) = 1$.

(2) If
$$x * y = 1, x, y \in X$$
, then $\psi(x) * \psi(y) = 1$.

Proof. Since $\psi(1) = \psi(1 * 1) = \psi(1) * \psi(1) = 1$, (1) holds. If $x, y \in X$ and x * y = 1, then by (1), $\psi(x) * \psi(y) = \psi(x * y) = \psi(1) = 1$.

Proposition 3.4. Suppose that $\psi : X \to Y$ is a BE-homomorphism of BE-semigroups. Then ψ is a monomorphism if and only if $Ker(\psi) = \{1\}$.

Proposition 3.5. Let X, Y be BE-semigroups and $\psi \in Hom(X, Y)$. Then

- (1) $\psi(x \odot 1) = \psi(1 \odot x) = 1$, for all $x \in X$.
- (2) $\psi(1 * x) = \psi(x)$, for all $x \in X$.
- (3) $\psi(x*1) = 1$, for all $x \in X$.

Proposition 3.6. Let $\psi : X \to Y$ be a monomorphism of BE-semigroups. If $x \in X$ is a left (resp. right) unit divisor of X then $\psi(x)$ is a left (resp. right) unit divisor of Y.

Proposition 3.7. Let X, Y and Z be BE-semigroups. If $\psi \in Hom(X, Y)$ and $\omega \in Hom(Y, Z)$, then $\omega \circ \psi \in Hom(X, Z)$.

Theorem 3.8. Let X and Y be BE-semigroups and let B be a left (resp. right) deductive system of Y. Then for any $\psi \in Hom(X,Y)$, $\psi^{-1}(B)$ is a left (resp. right) deductive system of X containing $Ker(\psi)$.

Proof. Let B be a left deductive system of Y. If $x \in X$ and $y \in \psi^{-1}(B)$, then $\psi(y) \in B$ and $\psi(x \odot y) = \psi(x) \odot \psi(y)$. It follows from the fact that B is a left deductive system that $\psi(x \odot y) \in B$, that is, $x \odot y \in \psi^{-1}(B)$. Hence $X \odot \psi^{-1}(B) \subseteq \psi^{-1}(B)$. Now let $x, y \in X$ be such that $y \in \psi^{-1}(B)$ and $y * x \in \psi^{-1}(B)$. Then $\psi(y) \in B$ and $\psi(y * x) = \psi(y) * \psi(x) \in B$. Since B is a left deductive system, we have $\psi(x) \in B$, that is, $x \in \psi^{-1}(B)$. Hence $\psi^{-1}(B)$ is a left deductive system of X. Since $\{1\} \subseteq B, Ker(\psi) = \psi^{-1}(\{1\}) \subseteq \psi^{-1}(B)$. Similarly we have the desired result for the right case.

Theorem 3.9. Let X and Y be BE-semigroups and let $\psi : X \to Y$ be a BE-epimorphism of BE-semigroups. If A is a left (resp. right) deductive system of X, then $\psi(A)$ is a left (resp. right) deductive system of Y.

Proof. Let $x \in \psi(A)$ and $y \in Y$. Since ψ is onto, there exist $a \in X$ and $b \in A$ such that $\psi(a) = y$ and $\psi(b) = x$. Thus, $a \odot b \in A$ implies that $y \odot x \in \psi(A)$. Hence $Y \odot \psi(A) \subseteq \psi(A)$. Now, suppose $a \in \psi(A)$, $y \in Y$ and $a * y \in \psi(A)$. Since ψ is onto, there exist $b \in A$ and $x \in X$ such that $\psi(b) = a$ and $\psi(x) = y$. Thus, $\psi(b * x) = \psi(b) * \psi(x) = a * y$, so $b * x \in A$. It follows from (ds2) that $x \in A$. Hence $y = \psi(x) \in \psi(A)$. Therefore, $\psi(A)$ is a left deductive system of Y. Similarly we have the desired result for the right case.

Theorem 3.10. Let $\psi : X \to Y$ be a BE-homomorphism of BE-semigroups. Then $Ker(\psi)$ is a deductive system of X.

Proof. Let $x \in X$ and $y \in Ker(\psi)$. Then we have $\psi(x \odot y) = \psi(x) \odot$ $\psi(y) = \psi(x) \odot 1 = 1$ and $\psi(y \odot x) = \psi(y) \odot \psi(x) = 1 \odot \psi(x) = 1$. Hence $X \odot Ker(\psi) \subseteq Ker(\psi)$ and $Ker(\psi) \odot X \subseteq Ker(\psi)$. Now, let $a * x \in Ker(\psi)$ and $a \in Ker(\psi)$. Then $1 = \psi(a * x) = \psi(a) * \psi(x) = 1 * \psi(x) = \psi(x)$. Hence $x \in Ker(\psi)$. Therefore, $Ker(\psi)$ is a deductive system of X.

Theorem 3.11. Let $\psi \in Hom(X,Y)$. If X is transitive, then $\psi(X)$ is transitive.

Proof. Let $\psi(x), \psi(y), \psi(z) \in \psi(X)$. Then

$$\begin{aligned} (\psi(y) * \psi(z)) * ((\psi(x) * \psi(y)) * (\psi(x) * \psi(z))) &= & \psi(y * z) * (\psi(x * y) * \psi(x * z)) \\ &= & \psi(y * z) * \psi((x * y) * (x * z)) \\ &= & \psi((y * z) * ((x * y) * (x * z))) \\ &= & \psi(1) \\ &= & 1. \end{aligned}$$

Therefore, $\psi(X)$ is transitive.

Theorem 3.12. Let $\psi : X \to Y$ be a *BE*-semigroup monomorphism. If $\psi(X)$ is transitive, then X is transitive.

Proof. Let $x, y, z \in X$. Then $(\psi(y) * \psi(z)) * ((\psi(x) * \psi(y)) * (\psi(x) * \psi(z))) = 1$, and thus $\psi((y * z) * ((x * y) * (x * z))) = 1$. Since ψ is a monomorphism, it follows from Proposition 3.4 that (y * z) * ((x * y) * (x * z)) = 1. Therefore, Xis transitive.

Theorem 3.13. Let X, Y and Z be BE-semigroups. Suppose that ϕ : $X \to Y$ is a BE-epimorphism, and let $\psi : X \to Z$ be a BE-homomorphism. If $Ker(\phi) \subseteq Ker(\psi)$, then there exists a unique BE-homomorphism $\gamma : Y \to Z$ such that $\gamma \circ \phi = \psi$.

Proof. Let $y \in Y$. Since ϕ is onto, there exists $x \in X$ such that $\phi(x) = y$. Define a mapping $\gamma : Y \to Z$ by $\gamma(y) = \psi(x)$. If $y = \phi(x_1) = \phi(x_2)$, $x_1, x_2 \in X$, then $1 = \phi(x_1) * \phi(x_2) = \phi(x_1 * x_2)$. Hence $x_1 * x_2 \in Ker(\phi)$. Since $Ker(\phi) \subseteq Ker(\psi)$, we have $1 = \psi(x_1) * \psi(x_2) = \psi(x_1 * x_2)$. Similarly, we get $\psi(x_2) * \psi(x_1) = 1$. Thus $\psi(x_1) = \psi(x_2)$. This means that γ is well-defined. Next we show that γ is a BE-homomorphism. Let $a, b \in Y$. Then there exist $x_1, x_2 \in X$ such that $a = \phi(x_1)$ and $b = \phi(x_2)$. Now we have

$$\gamma(a \odot b) = \gamma(\phi(x_1) \odot \phi(x_2)) = \gamma(\phi(x_1 \odot x_2)) = \psi(x_1) \odot \psi(x_2) = \gamma(a) \odot \gamma(b),$$

and

$$\gamma(a * b) = \gamma(\phi(x_1) * \phi(x_2)) = \gamma(\phi(x_1 * x_2)) = \psi(x_1) * \psi(x_2) = \gamma(a) * \gamma(b).$$

Hence γ is a BE-homomorphism. The uniqueness of γ follows directly from the fact that ϕ is a BE-epimorphism.

Theorem 3.14. Let X, Y and Z be BE-semigroups, and let $g: X \to Z$ be a BE-homomorphism and $h: Y \to Z$ be a BE-monomorphism with $Im(g) \subseteq Im(h)$, then there is a unique BE-homomorphism $f: X \to Y$ satisfying $h \circ f = g$.

Proof. For each $x \in X$, $g(x) \in \text{Im}(g) \subseteq \text{Im}(h)$. Since h is a BE-monomorphism, there exists a unique $b \in Y$ such that h(b) = g(a). Define a map $f: X \to Y$ by f(a) = b. Then $h \circ f = g$. To show that f is a BE-homomorphism. Let $c, d \in X$. Then

$$h(f(c * d)) = g(c * d) = g(c) * g(d) = h(f(c)) * h(f(d)) = h(f(c) * f(d)).$$

Since h is a BE-monomorphism, we have f(c * d) = f(c) * f(d). Similarly, we can prove that $f(c \odot d) = f(c) \odot f(d)$. The uniqueness of f follows from the fact that h is a monomorphism.

Let X be a self-distributive BE-semigroup and D be a deductive system of X. For any $x, y \in X$, we define a relation " \sim_D " on X as follows:

$$x \sim_D y$$
 if and only if $x * y \in D$ and $y * x \in D$.

Proposition 3.15. Let X be a self-distributive BE-semigroup and D be a deductive system of X. Then \sim_D is an equivalence relation on X.

Proof. Let $a \in D$. Since D is a deductive system of X and $1 \in X$, we have $1 \odot a = 1 \in D$. Let $x \in X$. Then $x * x = 1 \in D$, and thus $x \sim_D x$. This means that \sim_D is reflexive. The symmetry of \sim_D is immediate from the definition of the relation. For any $x, y, z \in X$, if $x \sim_D y$ and $y \sim_D z$, then $x * y \in D, y * x \in D$ and $y * z, z * y \in D$. Using (BE2) and (BE4), we obtain $(y*z)*((x*y)*(x*z)) = (y*z)*(x*(y*z)) = x*((y*z)*(y*z)) = x*1 = 1 \in D$, which implies that $(x * y) * (x * z) \in D$, and so $x * z \in D$ by (ds2). Similarly, we have $z * x \in D$. Hence $x \sim_D z$. Therefore, \sim_D is an equivalence relation on X.

Let *D* be a deductive system of a self-distributive BE-semigroup *X*. Denote the equivalence class containing *x* by D^x and the set of all equivalence classes in *X* by *X*/*D*, that is, $D^x = \{y \in X \mid y \sim_D x\}$ and $X/D = \{D^x \mid x \in X\}$. Clearly, $D^1 = D$ and $D^x = D^y$ if and only if $x \sim_D y$.

Theorem 3.16. If D is a deductive system of a self-distributive BEsemigroup X, then $(X/D, \odot, \circledast, D^1)$ is a self-distributive BE-semigroup under the operations

$$D^x \odot D^y = D^{x \odot y}$$
 and $D^x \circledast D^y = D^{x \ast y}$

Proof. Clearly $(X/D, \circledast, D^1)$ is a BE-algebra. Let $D^x = D^y$ and $D^u = D^v$. Then since D is a deductive system, we have $(x \odot u) * (x \odot v) = x \odot (u * v) \in D$ and $(x \odot v) * (x \odot u) = x \odot (v * u) \in D$. Thus $(x \odot u) \sim_D (x \odot v)$. On the other hand, $(x \odot v) * (y \odot v) = (x * y) \odot v \in D$ and $(y \odot v) * (x \odot v) = (y * x) \odot v \in D$. Hence $(x \odot v) \sim_D (y \odot v)$, and so $x \odot u \sim_D y \odot v$, that is, $D^{x \odot u} = D^{y \odot v}$. This shows that \odot is well-defined. Therefore, it is easy to prove that $(X/D, \odot)$ is a semigroup. Moreover, for any $D^x, D^y, D^z \in X/D$, we obtain $D^x \odot (D^y \circledast D^z) = D^x \odot D^{y * z} =$ $D^{x \odot (y * z)} = D^{(x \odot y) * (x \odot z)} = D^{(x \odot y)} \circledast D^{(x \odot z)} = (D^x \odot D^y) \circledast (D^x \odot D^z)$. Similarly, we have $(D^x \circledast D^y) \odot D^z = (D^x \odot D^z) \circledast (D^y \odot D^z)$. Thus, X/D is a BEsemigroup. Let $D^x, D^y, D^z \in X/D$. Then $D^x \circledast (D^y \circledast D^z) = D^x \circledast D^{y * z} =$ $D^{x * (y * z)} = D^{(x * y) * (x * z)} = D^{x * y} \circledast D^{x * z} = (D^x \circledast D^y) \circledast (D^x \circledast D^z)$. Therefore, $(X/D, \odot, \circledast, D^1)$ is a self-distributive BE-semigroup. \Box

Proposition 3.17. If I and J are deductive systems of a self-distributive BE-semigroup X and $I \subset J$, then

- (i) I is also a deductive system of J.
- (*ii*) J/I is a deductive system of X/I.

Theorem 3.18. Let $\psi : X \to Y$ be a BE-homomorphism of self-distributive BE-semigroups. Then for any deductive system D of X, $D/(Ker(\psi) \cap D) \cong \psi(D)$.

Proof. Let $A = Ker(\psi) \cap D$. Clearly, A is a deductive system of D. Define a mapping $\xi : D/A \to Y$ by $\xi(A^x) = \psi(x)$, for all x in D. Then for any $A^x, A^y \in D/A$, we have

$$\begin{array}{lll} A^x &=& A^y \Leftrightarrow x \ast y \in A, y \ast x \in A, \\ &\Leftrightarrow \psi(x \ast y) = 1, \psi(y \ast x) = 1, \\ &\Leftrightarrow \psi(x) \circledast \psi(y) = 1, \psi(y) \circledast \psi(x) = 1, \\ &\Leftrightarrow \psi(x) = \psi(y), \\ &\Leftrightarrow \xi(A^x) = \xi(A^y). \end{array}$$

Hence ξ is well-defined and one to one. For all $A^x, A^y \in D/A$, we have

$$\xi(A^x \circledast A^y) = \xi(A^{x*y}) = \psi(x*y) = \psi(x) * \psi(y) = \xi(A^x) * \xi(A^y),$$

and

$$\xi(A^x \odot A^y) = \xi(A^{x \odot y}) = \psi(x \odot y) = \psi(x) \odot \psi(y) = \xi(A^x) \odot \xi(A^y).$$

Hence ξ is a BE-homomorphism of self-distributive BE-semigroups. Thus we obtain $\operatorname{Im}(\xi) = \{\xi(A^x) \mid x \in D\} = \{\psi(x) \mid x \in D\} = \psi(D)$. Therefore, $D/(Ker(\psi) \cap D) \cong \psi(D)$.

Corollary 3.19. If $\psi : X \to Y$ is a BE-epimorphism of self-distributive BE-semigroups, then $X/Ker(\psi) \cong Y$.

Definition 3.20. A BE-semigroup X is said to be Noetherian if each deductive system of X is finitely generated.

Theorem 3.21. Given two self-distributive BE-semigroups X, Y, if ψ : $X \to Y$ is a BE-epimorphism and X is Noetherian, then so is Y.

Proof. By Theorem 3.19, $X/Ker(\psi) \cong Y$. It follows from Proposition 3.17(*ii*), that every deductive system of $X/Ker(\psi)$ is of the form $D/Ker(\psi)$, where D is a deductive system of X with $Ker(\psi) \subseteq D$. Let $D_1/Ker(\psi) \subseteq D_2/Ker(\psi) \subseteq \ldots$ be any ascending chain of deductive systems in Y. Then $Ker(\psi) \subseteq D_1 \subseteq D_2 \subseteq \ldots$ is an ascending chain of deductive systems of X. Since X is Noetherian, we have $D_n = D_{n+1} = \ldots$ for some natural number n. Hence we obtain $D_n/Ker(\psi) = D_{n+1}/Ker(\psi) = \ldots$.

References

- S.S. Ahn, Y.H. Kim, On BE-semigroups, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), Article ID 676020, 8 pages.
- [2] S.S. Ahn, K.S. So, On ideals and upper sets in BE-algebras, Scientiae Mathematicae Japonicae, 68, No. 2 (2008), 279-285.
- [3] S.S. Ahn, K.S. So, On generalized upper sets in BE-algebras, Bulletin of the Korean Mathematical Society, 46, No. 2 (2009), 281-287.
- [4] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ., 8, No. 1 (1980), 125-130.
- [5] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, *Mathematica Japonica*, 23 (1978), 1-26.
- [6] Y.B. Jun, E.H. Roh, H.S. Kim, On BH-algebras, Scientiae Mathematicae Japonicae Online, 1 (1998), 347-354.
- [7] K.H. Kim, Multipliers in BE-algebras, International Mathematical Forum,
 6, No. 17 (2011), 815-820.
- [8] H.S. Kim, Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, 66, No. 1 (2007), 113-116.
- [9] J. Neggers, H.S. Kim, On d-algebras, Mathematica Slovaca, 49 (1999), 19-26.
- [10] Y.H. Yon, S.M. Lee, K.H. Kim, On Congruences and BE-relations in BEalgebras, *International Mathematical Forum*, 5, No. 46 (2010), 2263-2270.