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Abstract: We consider the hard sphere fluid confined to a container. We
realize two heat baths at two opposite ends of the container entailing a sta-
tionary heat flow through the fluid. Based on a simulation experiment, the
heat conductivity can be estimated. A formula for the heat conductivity of the
hard sphere fluid is proposed; the formula is valid for arbitrary temperature
and for a wide range of fluid density. As an application, the obtained formula
is discussed in the light of laboratory values of thermal conductivity for noble
gases and for water.
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1. Introduction

An important and conceptually simple microscopic model for a substance is the
Boltzmann system of moving molecules that are described by hard spheres. In
this model the molecules are subject to thermal motion and interact through
collisions.

In the present contribution we consider a container C filled with hard
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spheres; a prescribed initial temperature of the hard sphere fluid can be ad-
justed by generating initial velocities of the spheres according to an appropri-
ate distribution. We realize heat baths at two opposite walls of container C
entailing a slope of temperature along the container; the position dependent
temperature can be estimated by the Nadaraya-Watson estimator. Since the
resulting heat flow can be assessed during the computational process, we are
able to estimate the thermal conductivity of the hard sphere fluid depending on
temperature and density. Based on a long term computer experiment, we estab-
lish a formula for the thermal conductivity; this formula is valid for arbitrary
temperatures T and relative densities ̺r ∈ [0, 0.33]. As an application, we ex-
plore a possibility of microscopic explanation of empirical thermal conductivity
values for noble gases and for liquid water.

2. The Distribution of Velocities of Spheres

Approaching a Wall

In the present section we explore statistically the distribution of velocities of
spheres approaching a container wall. The obtained computer experimental
result can be interpreted as a guidance for the design of a heat bath, which is
utilized in Section 3.

Let us consider a 3-dimensional container

C := [0, a] × [−b, b]2 ⊂ R
3

where a = 8b > 0. We inject N hard spheres of mass m = N−1
A and radius

r = 10−10m into C according to the uniform distribution where NA = 6.022 ·
1026kg−1 denotes the modified Avogadro number.

We generate the initial velocities of the disks according to the normal dis-
tribution N(0, σ2 · I3) with mean vector 0 ∈ R

3 and covariance matrix σ2 · I3
where I3 denotes the 3 × 3 – identity matrix. This initial state complies with
Maxwell hypothesis, cf. [1].

The system can be interpreted thermally according to

σ2 =
kB · T
m

(2.1)

where kB = 1.38·10−23J/K and T denote Boltzmann constant and temperature,
respectively.

Newtonian dynamics is imposed on the micro-constituents of the fluid. Dur-
ing the computational process reflections of spheres at the right wall

WR := {a} × [−b, b]2 ⊂ ∂C
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Figure 1: Model density fσ and its kernel estimate

of container C occur. We sample velocity vectors u(1), u(2), . . . of spheres ap-
proaching wall WR. Plausibility considerations entail that the components

u
(1)
1 , u

(2)
1 , . . . of vectors u(1), u(2), . . . orthogonal to wall WR are distributed ac-

cording to a distribution Pσ whose probability density is given by

fσ(u) =
u

σ2
· exp

(
− u2

2σ2

)
(u ≥ 0).

Let K : R → R+ denote the Gaussian kernel:

K(x) :=
1√
2π

exp

(
−x2

2

)
.

The kernel estimate of the probability density of the velocity components u
(1)
1 ,

. . . , u
(n)
1 orthogonal to WR is given by

f̂n(u) =
1

nh
·

n∑

i=1

K

(
u− u

(i)
1

h

)

where h > 0 is an appropriate bandwidth. (For an introduction to the method
of kernel density estimation cf. [4]).

In Figure 1 the graphical comparison between fσ and f̂n is presented where
n = 1000. Since the noisy graph of f̂n approximates the smooth graph of
fσ, Figure 1 confirms the validity of fσ for the description of the distribution

of velocity components u
(1)
1 , u

(2)
1 , . . . of spheres approaching wall WR. This
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confirmation is obtained independently of the adjusted temperature T and of
the selected density

̺ =
N

4ab2
(2.2)

of the fluid.

3. The Computer Experiment and its Outcome

In the computer experiment considered in the present section N = 5000 hard
spheres are injected into container C introduced in Section 2. The initial
velocities of the spheres are generated according to the normal distribution
N(0, σ2 · I3) with the thermal interpretation of the variance given in (2.1) and
with the specification T = 300K of the initial temperature of the fluid. Newto-
nian dynamics is imposed on the spheres.

The walls WL := {0}× [−b, b]2 and WR are exposed to two heat baths with
temperatures TL = 200K and TR = 400K, respectively. If sphere j approaches

wall WL, then it is reflected and its velocity component v
(j)
1 orthogonal to wall

WL is generated according to distribution Pσ where

σ := σL :=

√
kB · TL

m
;

cf. Section 2. The velocity components v
(j)
2 and v

(j)
3 tangential to wall WL are

generated according to the normal distribution N(0, σ2
L). An analogous heat

bath with TR = 400K is implemented at wall WR.

The dynamics and the heat baths entail a heat flow from WR to WL.

The heat input HR(t) at WR and the heat output HL(t) at WL can be
sampled as functions of time; after some experimental time τ the approximative
equality

HL(τ) ≈ HR(τ)

is observed, which indicates a stationary heat flow through the container.

Let x(j)(t) ∈ C and v(j)(t) ∈ R
3 denote the position and velocity of sphere

j at time t, respectively. Based on a momentary microstate

(x(1)(t), . . . , x(N)(t); v(1)(t), . . . , v(N)(t))

temperature T as function of the horizontal position coordinate ξ can be esti-
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Figure 2: Screen shot of the experiment

mated by the Nadaraya-Watson estimator

T̂t(ξ) =

m ·
N∑
j=1

〈v(j)(t), v(j)(t)〉 ·K
(

ξ−x
(j)
1 (t)
h

)

3kB ·
N∑
j=1

K

(
ξ−x

(j)
1 (t)
h

)

where h > 0 denotes an appropriate bandwidth and 〈, 〉 the standard scalar
product on R

3.

In Figure 2 container C filled with the hard sphere fluid is shown. In the
diagram a typical Nadaraya-Watson estimate of temperature is visualized (noisy
line). The smooth line corresponds to the function

Tt(ξ) = βT · (ξ − ξT )
αT (3.1)

where parameters αT , βT , ξT are fitted to the nonparametric estimate T̂t.
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The (nonparametric) kernel estimate of the relative density of the fluid as
a function of the horizontal position coordinate ξ is given by

̺̂tr(ξ) =
√
32r3

b2 · h ·
N∑

j=1

K

(
ξ − x

(j)
1 (t)

h

)

where
√
32r3 denotes the inverse density of the close packing of spheres. Anal-

ogously, ̺̂tr can be approximated by the smooth function

̺̂̂t
r(ξ) = β̺ · (ξ − ξ̺)

α̺ (3.2)

by fitting parameters α̺, β̺, ξ̺ to estimate ̺̂tr.
The principle of corresponding states entails that heat conductivity κ of the

hard sphere fluid is proportional to

σ

r2
=

√
kB·T
m

r2
;

this suggests the formula

κ = kB · γ(̺r) ·
√

kB · T
m

· 1

r2
(3.3)

where function γ reflects the dependence of κ on the relative density of the
fluid.

We repeat the described experiment adjusting different average relative den-
sities

̺r =
√
32r3 · N

4ab2

by varying volume 4ab2 of container C. At each repetition we sample the
estimates

κ̂τ :=
HR(τ)

τ · b2 · T ′
τ (ξ0)

,

̺̂̂τ
r (ξ0) and

σ̂τ :=

√
kB · Tτ (ξ0)

m

where T ′
τ denotes the derivative of function Tτ w.r.t. the position variable ξ

(gradient of temperature). For a large value τ of experimental time we obtain
pairs (̺i, γi) where

̺i := ̺̂̂
τ

r (ξ0)
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Figure 3: Sampled pairs (̺i, γi)

is an estimate of the relative density and

γi :=
κ̂τ · r2
kB · σ̂τ

is an estimate of the value γ(ρi) of function γ expressing the dependence of κ
on relative density according to (3.3).

In Figure 3 the sampled pairs (̺i, γi), i = 1, . . . , n of estimates are visualized.
The diagram shows a strong dispersion of estimates γi in particular for high
densities. The data visualized in Figure 3 carries statistical information about
the dependence of coefficient γ in (3.3) on the relative density of the fluid. The
visual impression suggests the ansatz

γ̂(̺r) = γ0 + γ1̺r + γ2̺
2
r (3.4)

for approximating function γ. The weighted least squares estimates of the
parameters in (3.4) based on computer experimental data are given by

γ0 = 1.6497 · 10−1, γ1 = 4.9295, γ2 = 6.1836,
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where the weight function w(̺r) = 1/̺r has been applied. Note that estimate
γ0 compares well with the corresponding theoretical constant π−3/2 obtained
for dilute gases, cf. [2], p. 481.

The announced formula for heat conductivity κ of the hard sphere fluid is
given by

κ = kB · (γ0 + γ1̺r + γ2̺
2
r) ·
√

kB · T
m

· 1

r2
. (3.5)

Based on our computer experimental experience we claim that (3.5) is valid for
arbitrary temperature T and for relative density ̺r ∈ [0, 0.33].

4. Comparison with Laboratory Data

Since thermal conductivity of real fluids can be determined in laboratory, it is
natural to compare formula (3.5) with measurements. In [3] laboratory values
of thermal conductivity of the noble gas Ne are reported for the temperature
range 50K≤ T ≤ 2000K. Since these data are sampled at constant pressure
p = 1.01 · 105N/m2 and not at constant density ̺, we utilize the equation of
state of the ideal gas,

p = ̺ · kB · T, (4.1)

to determine the corresponding relative density in the hard sphere model

̺r =
√
32 · r3 · ̺ =

√
32 · r3 · p

kB · T

which can be inserted into (3.5).
In Figure 4 the horizontal axis corresponds to temperature and the vertical

axis to heat conductivity. The dotted line shows laboratory measurements of κ
for Ne; the continuous line corresponds to prediction (3.5) where m := mr/NA

and mr = 20.18 denotes the relative atomic mass of Ne; radius r is fitted to the
data by the least square method yielding the realistic value r̂ = 1.1627 ·10−10m.

Figure 4 shows an essentially good agreement between theory and labora-
tory measurements. It should be emphasized that atomic radius r is the only
parameter required here for microscopic explanation of thermal conductivity of
Ne as function of temperature. An attentive look at Figure 4 reveals, however,
a slight discrepancy between measurements and the fitted line which can be
interpreted as a limitation of the description of a real fluid by the hard sphere
model.

Analogous comments apply to heat conductivity of other noble gases and,
surprisingly, also to liquid water.
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Figure 4: Thermal conductivity of Ne
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