ON k–GRACEFULNESS OF r–CROWNS FOR COMPLETE BIPARTITE GRAPHS

Deligen¹§, Lingqi Zhao², Jirimutu³
¹,³College of Mathematics
Inner Mongolian University for Nationalities
Tongliao, 028043, P.R. CHINA
²College of Computer Science and Technology
Inner Mongolian University for Nationalities
Tongliao, 028043, P.R. CHINA

Abstract: Let $I_r(K_{m,n})$ denote a r– crown of a complete bipartite graph $K_{m,n}$ obtained by adding r hanged edges to each vertex of $K_{m,n}$. Ma kejie conjectured that 1-crown of complete bipartite graph $K_{m,n}$ ($m \leq n$) is k– graceful graph for $k \geq 2$. The conjecture has been shown true when $m = 1, 2, 3, 4$ for arbitrary $n \geq m$ and $r \geq 2$. In this paper we discuss the k–gracefulness of r–crown $I_r(K_{m,n})$ ($m \leq n, r \geq 2$) for complete bipartite graph $K_{m,n}$ and prove the conjecture when $m = 5$, for arbitrary $n \geq m$ and $r \geq 2$.

AMS Subject Classification: 05C65
Key Words: complete bipartite graph, graceful graph, k–graceful graph

1. Introduction

Most graph labeling methods trace their origin to one introduced by Rosa [1] in 1966, or one given by Graham and Sloane [2] in 1980. Let $G(V, E)$ be a simple undirected graph, if there exist a single-valued mapping $f : V(G) \rightarrow \{0, 1, \cdots, |E|\}$ such that $f(x) \neq f(y)$ for distinct $x, y \in V(G)$ and an induced mapping is defined as $f^* : E(G) \rightarrow \{1, 2, \cdots, |E|\}$, where $f^*(uv) = |f(u) - f(v)|$ is a bijection for all edges $uv \in E(G)$, then Rosa [1] called the function f the β–valuation of a graph G, Golomb [3] subsequently called such labelings to

Received: March 12, 2012 © 2012 Academic Publications, Ltd.
§Correspondence author
be graceful and the graph is called a graceful graph and f is called a graceful labeling, while f^* is called an induced edge’s graceful labeling.

Although an unpublished result of Erdős says that most graphs are not graceful (cf. [2]), most graphs that have some sort of regularity of structure are graceful. Labeled graphs serve as useful models for a broad range of applications such as: coding theory, x-ray crystallography, radar, astronomy, circuit design, communication network addressing and data base management, see [4], [5] and [6] for details.

A natural generalization of graceful graphs is the notion of k-graceful graphs introduced independently by Slater [7] in 1982 and by Maheo and Thuillier [8] in 1982. Let $G(V, E)$ be a simple undirected graph, k be an arbitrary natural number larger than 2, if there exists a mapping $f : V(G) \rightarrow \{0, 1, 2, \ldots, |E| + k - 1\}$ such that $f(x) \neq f(y)$ for distinct $x, y \in V(G)$ and an induced mapping is defined as $f^*: E(G) \rightarrow \{k, k + 1, \ldots, |E| + k - 1\}$, where $f^*(uv) = |f(u) - f(v)|$ is a bijection for all edges $uv \in E(G)$, then the graph G is called a k-graceful graph, f is called a k-graceful labeling, while f^* is called an induced edge’s k-graceful labeling.

Obviously, 1-graceful is graceful. Graphs that are k-graceful for all k are sometimes called arbitrarily graceful.

Results of Maheo and Thuillier [8] together with those of Slater [7] show that: C_n is k-graceful if and only if either $n \equiv 0$ or $1(mod 4)$ with k even and $k \leq (n - 1)/2$, or $n \equiv 3(mod 4)$ with k odd and $k \leq (n^2 - 1)/2$. Maheo and Thuillier [8] also proved that the wheel $W_{2k + 1}$ is k-graceful and conjectured that W_{2k} is k-graceful when $k \neq 3$ or $k \neq 4$. This conjecture was proved by Liang, Sun, and Xu [9]. Kang [10] proved that $P_m \times C_4$ is k-graceful for all k. Lee and Wang [11] showed that the graphs obtained from a nontrivial path of even length by joining every other vertex to one isolated vertex (a lotus), the graphs obtained from a nontrivial path of even length by joining every other vertex to two isolated vertices (a diamond), and the graphs obtained by arranging vertices into a finite number of rows with i vertices in the ith row and in every row the jth vertex in that row is joined to the jth vertex and $(j + 1)$st vertex of the next row (a pyramid) are k-graceful.

Liang and Liu [12] have shown that $K_{m,n}$ is k-graceful. Bu, Gao, and Zhang [13] have proved that $P_n \times P_2$ and $(P_n \times P_2) \cup (P_n \times P_2)$ are k-graceful for all k. Acharya (see [14]) has shown that a k-graceful Eulerian graph with q edges must satisfy one of the following conditions: $q \equiv 0(mod 4)$, $q \equiv 1(mod 4)$ if k is even, or $q \equiv 3(mod 4)$ if k is odd. Bu, Zhang, and He [15] have shown that an even cycle with a fixed number of pendant edges adjoined to each vertex is k-graceful. Lu, Pan, and Li [16] have proved that $K_{1,m} \cup K_{p,q}$ is k-graceful.
when \(k > 1 \), and \(p \) and \(q \) are at least 2. Seoud and Elsakhawi [17] proved: paths and ladders are arbitrarily graceful; and for \(n > 3 \), \(K_n \) is \(k \)-graceful if and only if \(k = 1 \) and \(n = 3 \) or 4.

Definition 1. The \(r \)-crown of the complete bipartite graph \(K_{m,n} \), denoted as \(I_r(K_{m,n}) \), is obtained by adding \(r \) hanged edges to each vertex of \(K_{m,n} \).

Obviously, The 1-- crown \(I_1(K_{m,n}) \) of a complete bipartite graph is a graceful graph. Ma ke-jie [18] presented the following conjecture:

Conjecture 1. (see [18]) 1--crown of complete bipartite graph \(K_{m,n} \) \((m \leq n)\) is \(k \)-- gracefull graph for \(k \geq 2 \).

This conjecture has not proved or disproved up to now. Jirimutu [19] has showed that this conjecture is true when \(m = 1 \). Jirimutu, Yu-Lan Bao, Fan-li Kong [20] have proved that this conjecture is true when \(m = 2, 3 \), for arbitrary \(n \geq m \) and \(r \geq 2 \). Siqinqimuge and Jirimutu [21] have proved that this conjecture is true when \(m = 4 \), for arbitrary \(n \geq m \) and \(r \geq 2 \). In this paper we have proved that this conjecture is true when \(m = 5 \), for arbitrary \(n \geq 5 \) and \(r \geq 2 \).

2. The Main Result

Theorem 1. For \(m = 5 \), \(r \geq 2 \) and \(n \geq 5 \), the \(r \)--crown \(I_r(K_{m,n}) \) of a complete bipartite graph \(K_{m,n} \) is a \(k \)-- graceful graph for \(k \geq 2 \).

Proof. We first give some notations used in the following proof. In \(I_r(K_{m,n}) \), let \(X = \{x_1, x_2, \ldots, x_m\} \) and \(Y = \{y_1, y_2, \ldots, y_n\} \), \((X,Y)\)is a bipartition of \(K_{m,n} \), and let the vertices of the \(r \)--hanged edges connected to each vertex \(x_i (i = 1, 2, \ldots, m) \) in \(X \) are denoted by \(x_{it} (t = 1, 2, \ldots, r) \); the vertices of the \(r \)--hanged edges connected to each vertex \(y_j (j = 1, 2, \ldots, n) \) in \(Y \) are denoted by \(y_{jt} (j = 1, 2, \ldots, n, t = 1, 2, \ldots, r) \). Based on above notations we define the vertex label \(f \) of \(I_r(K_{m,n}) (n \geq 5, r \geq 2) \) as follows. Let

\[
\begin{align*}
 f(x_i) &= \begin{cases}
 k + (6 - i)n + (5 + n)r - 1, & i = 1, 2, \\
 k + (6 - i)n + (5 + n - \frac{(i-1)(i-2)}{2})r - 1, & i = 3, 4, 5,
 \end{cases} \\
 f(x_{it}) &= \begin{cases}
 t - 1, & i = 1; \ t = 1, 2, \ldots, r \\
 n + (i - 1)r + t - 1, & i = 2, 3, 4, 5; \ t = 1, 2, \ldots, r
 \end{cases} \\
 f(y_j) &= r + j - 1, \quad j = 1, 2, \ldots, n,
\end{align*}
\]
The edge label induced by $20 \text{ Deligen, L. Zhao, Jirimutu}$

$$f(y_{jt}) = \begin{cases}
 k + (r + 1)j - t, & j = 1, 2, 3, \cdots, n - 6; t = 1, 2, \cdots, r, \\
 k + 2r + j(r + 1) - (t + 1), & j = n - 5, n - 4, n - 3; t = 1, 2, \cdots, r, \\
 k + n + 3r + j(r + 1) - (t + 1), & j = n - 2, n - 1; t = 1, 2, \cdots, r, \\
 k + 3n + (j + 4)r - (t + 1), & j = n; t = 1, 2, \cdots, r.
\end{cases}$$

It is easy to check that f is a single-valued mapping from $V(I_{r}(K_{m,n}))$ to $\{0, 1, 2, \cdots, |E(I_{r}(K_{5,n}))| + k - 1\}$.

Now we prove that the induced mapping $f^* : E(G) \rightarrow \{k, k + 1, \cdots, |E| + k - 1\}$, where $f^*(uv) = |f(u) - f(v)|$, is a bijective mapping for all edges $uv \in E(G)$. Let

$$A_i = \{|f(x_i) - f(x_{it})| : t = 1, 2, \cdots, r\}, i = 1, 2, \cdots, 5,$$

$$B_i = \{|f(x_i) - f(y_j)| : j = 1, 2, \cdots, n\}, i = 1, 2, \cdots, 5,$$

$$C_j = \{|f(y_j) - f(y_{jt})| : t = 1, 2, \cdots, r\}, j = 1, 2 \cdots, n.$$

The edge label induced by f^* is as follows.

$$A_1 = \{|f(x_1) - f(x_{1t})| : t = 1, 2, \cdots, r\} = \{k + 5n + (n + 5)r - 1, k + 5n + (n + 5)r - 2, \cdots, k + 5n + (n + 4)r\},$$

$$B_1 = \{|f(x_1) - f(y_j)| : j = 1, 2, \cdots, n\} = \{k + 5n + (n + 4)r - 1, k + 5n + (n + 4)r - 2 \cdots, k + 5n + (n + 4)r - n\},$$

$$B_2 = \{|f(x_2) - f(y_j)| : j = 1, 2, \cdots, n\} = \{k + 4n + (n + 4)r - 1, k + 4n + (n + 4)r - 2 \cdots, k + 3n + (n + 4)r\},$$

$$A_2 = \{|f(x_2) - f(x_{2t})| : t = 1, 2, \cdots, r\} = \{k + 3n + (n + 4)r - 1, k + 3n + (n + 4)r - 2, \cdots, k + 3n + (n + 3)r\},$$

$$B_3 = \{|f(x_3) - f(y_j)| : j = 1, 2, \cdots, n\} = \{k + 3n + (n + 3)r - 1, k + 3n + (n + 3)r - 2 \cdots, k + 2n + (n + 2)r\},$$

$$E(G) = \{k, k + 1, \cdots, |E| + k - 1\},$$

$$f^*(uv) = |f(u) - f(v)|.$$
\[C_n = \{ |f(y_n) - f(y_{n,t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + 2n + (n+3)r - 1, k + 2n + (n+3)r - 2, \ldots, k + 2n + (n+2)r \}, \]

\[A_3 = \{ |f(x_3) - f(x_{3,t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + 2n + (n+2)r - 1, k + 2n + (n+2)r - 2, \ldots, k + 2n + (n+1)r \}, \]

\[B_4 = \{ |f(x_4) - f(y_j)| : j = 1, 2, \ldots, n \} \]
\[= \{ k + 2n + (n+1)r - 1, k + 2n + (n+1)r - 2, \ldots, k + n + (n+1)r \}, \]

\[C_{n-1} = \{ |f(y_{n-1}) - f(y_{(n-1),t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + n + (n+1)r - 1, k + n + (n+1)r - 2, \ldots, k + n + nr \}, \]

\[C_{n-2} = \{ |f(y_{n-2}) - f(y_{(n-2),t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + n + n + r - 1, k + n + nr - 2, \ldots, k + n + (n-1)r \}, \]

\[A_4 = \{ |f(x_4) - f(x_{4,t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + n + (n-1)r - 1, k + n + (n-1)r - 2, \ldots, k + n + (n-2)r \}, \]

\[B_5 = \{ |f(x_5) - f(y_j)| : j = 1, 2, \ldots, n \} \]
\[= \{ k + n + (n-2)r - 1, k + n + (n-2)r - 2, \ldots, k + (n-2)r \}, \]

\[C_{n-3} = \{ |f(y_{n-3}) - f(y_{(n-3),t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + (n-2)r - 1, k + (n-2)r - 2, \ldots, k + (n-3)r \}, \]

\[C_{n-4} = \{ |f(y_{n-4}) - f(y_{(n-4),t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + (n-3)r - 1, k + (n-3)r - 2, \ldots, k + (n-4)r \}, \]

\[C_{n-5} = \{ |f(y_{n-5}) - f(y_{(n-5),t})| : t = 1, 2, \ldots, r \} \]
\[= \{ k + (n-4)r - 1, k + (n-4)r - 2, \ldots, k + (n-5)r \}, \]
\[A_5 = \{|f(x) - f(x,t)| : t = 1, 2, \cdots, r\} = \{k + (n - 5)r - 1, k + (n - 5)r - 2, \cdots, k + (n - 6)r\}, \]

\[C_{n-6} = \{|f(y) - f(y_{(n-6),t})| : t = 1, 2, \cdots, r\} = \{k + (n - 6)(r - 1), k + (n - 6)(r - 1) - 1, \]
\[\cdots, k + (n - 7)(r - 1)\} \]

\[C_1 = \{|f(y) - f(y_{1,t})| : t = 1, 2, \cdots, r\} = \{k + r - 1, k + r - 2, \cdots, k\}. \]

We tidy up the elements of each set and have an union
\[
\bigcup_{i=1}^{n} C_i \cup \bigcup_{i=1}^{n} B_i \cup \bigcup_{i=1}^{n} A_i = C_1 \cup C_2 \cup \cdots \cup C_{n-m-1} \cup A_5 \cup C_{n-5} \cup C_{n-4} \cup C_{n-3} \cup B_5 \cup A_4
\]
\[
\cup C_{n-2} \cup C_{n-1} \cup B_4 \cup A_3 \cup C_n \cup B_3 \cup A_2 \cup B_2 \cup B_1 \cup A_1
\]
\[= \{k, k + 1, \cdots, |E(I_r(K_{5,n}))| + k - 1\} \]

So, the induced mapping \(f^* \) is a bijective mapping from \(E(I_r(K_{5,n})) \) onto \(\{k, k + 1, \cdots, |E(I_r(K_{5,n}))| + k - 1\} \).

Thus, the \(r \)-crown graph \(I_r(K_{5,n}) \) of a complete bipartite graph \(k_{5,n} \) is a \(K \)-graceful graph.

\[\square \]

Acknowledgments

This research is supported by the National Natural Science Foundation (No. 11161032) and the project of the Inner Mongolia Autonomous Region (No. 2010MS0112, No. NJZY11209 and No. NJZY11198).
ON k–GRACEFULNESS OF r–CROWNS...

References

[16] X. Lu, W. Pan, X. Li, k-gracefulness and arithmetic of graph $S_t(m)\cup K_{p,q}$, *J. Jilin Univ.*, 42 (2004), 333-336.

[19] Jirimutu, On $k-$gracefulness of $r-$Crown $I_r(K_{1,n})$ ($n \geq 2, r \geq 2$) for Complete Bipartite Graph, *Journal of Inner Mongolia University for Nationalities*, 2 (2003), 108-110.

