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Abstract: Let V be any vector space and (V') the set of all partial injective
linear transformations defined on V', that is, all injective linear transformations
a: A — B where A, B are subspaces of V. Then I(V) is a semigroup under
composition. Let W be a subspace of V. Define I(V,WW) ={a € I(V) : Va C
W1, So I(V,W) is a subsemigroup of I(V). In this paper, we present the
largest regular subsemigroup of I(V, W) and determine its Green’s relations.
Furthermore, we study the natural partial order < on I(V,W) in terms of
domains and images, compare < with the subset order and find elements of
I(V,W) which are compatible.
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1. Introduction

The partial transformation semigroup on the set X, denoted P(X), is the set
of all functions from a subset of X into X, with the operation of composition.
In addition, the semigroups 7'(X) and I(X) are defined by:

Received:  August 27, 2012 © 2012 Academic Publications, Ltd.
. Y

url: www.acadpubl.eu

§Com"espondence author



598 K. Sangkhanan, J. Sanwong

T(X) = {a€P(X):dom a= X},
I(X) = {a€ P(X): «ais injective}.

T(X) and I(X) are called the full transformation semigroup and the symmetric
inverse semigroup, respectively. It is well-known that P(X), T(X) are regular
and I(X) is an inverse semigroup.

Now, we introduce the partial transformation semigroup with restricted
range. Let Y be a subset of X. We consider the semigroup PT(X,Y), T(X,Y)
and I(X,Y) defined by PT(X,Y) = {a € P(X) : Xa C Y}, T(X,Y) =
T(X)N PT(X,Y) and I(X,Y) = I(X) N PT(X,Y) . Clearly, PT(X,X) =
P(X), T(X,X) = T(X), I(X,X) = I(X) and PT(X,0) = {0} = I(X, 0).

In 2008, Sanwong and Sommanee [7] obtained the largest regular subsemi-
group of T'(X,Y) and a class of its maximal inverse subsemigroups. Further,
they characterized Green’s relations on 7'(X,Y’). In [2], Fernandes and San-
wong proved that PF = {a € PT(X,Y) : Xa =Ya} and I(Y) are the largest
regular subsemigroups of PT(X,Y’) and I(X,Y’), respectively. Moreover, they
determined Green'’s relations on PT(X,Y) and I(X,Y).

Analogously to P(X), we can define a partial linear transformation on some
vector spaces. Let V' be any vector space, P(V') the set of all linear transfor-
mations « : S — T where S and T are subspaces of V', that is, every element
a € P(V), the domain and range of « are subspaces of V. Then we have P(V')
under composition is a semigroup and it is called the partial linear transforma-
tion semigroup of V. The full linear transformation semigroup, T'(V'), and the
injective linear transformation semigroup, I(V') are defined as follows.

TV) = {a€P(V):dom a=V},
I(V) = {a€ P(V):a«is injective}.

Similarly, the linear transformation semigroups with restricted range can
be defined as follows. For any vector space V and a subspace W of V, let
PT(V,W) = {a € P(V) : Va C W}, T(V,W) = T(V)n PT(V,W) and
I(V,W) =I1I(V)n PT(V,W). Obviously, PT(V,V) = P(V), T(V,V) =T(V)
and I(V,V) = I(V). Hence we may regard PT(V,W), T(V,W) and I(V,W)
as generalizations of P(V), T'(V) and I(V'), respectively.

Now, we deal with a natural partial order or Mitsch order [4] on any semi-
group S defined by for a,b € S,

a < bif and only if a = 2b = by, za = a for some z,y € S*.

Recently, Sangkhanan and Sanwong [5] characterized the natural partial
order < and the subset order C on PT(X,Y), described the meet and join of <
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and C. They also compared <, C with other partial orders and found elements
of PT(X,Y) which are compatible with <.

In 2005, Sullivan [8] studied the natural partial order < and the subset order
Con P(V). The author determined the meet and join of these two partial orders
and also found all elements of P(V) which are compatible with respect to <.
In [6], the authors presented the largest regular subsemigroup and determine
Green’s relations on PT(V,W). Furthermore, they studied the natural partial
order < on PT(V,W) in terms of domains and images, compared < with the
subset order, characterized the meet and join of these two orders, and found
elements of PT(V, W) which are compatible.

In this paper, we describe the largest regular subsemigroup of I(V, W) and
characterized its Green’s relations. Furthermore, we study the natural partial
order < on I(V, W) in terms of domains and images, compare < with the subset
order and characterize elements of I(V, W) which are compatible.

2. Regularity and Green’s Relations on I(V, W)

We begin this section with the following simple result on I(V, W) which will be
used through out the paper. Here Va = {va : v € V Ndom a}.

Lemma 1. IfS and T are subspaces of V- with S C T, then Sao C T« for
all o € I(V,W).

For convenience, we adopt the convention used in [1] namely, if o € P(X)

then we write
()
o= .
a;

and take as understood that the subscript i belongs to some (unmentioned)
index set I, the abbreviation {a;} denotes {a; : i € I}, and that Xa = {a;}
and a;o” ' = X;.

Similarly, we can use this notation for elements in (V). To define a linear
transformation o € I(V'), we first choose a basis {e;} for a subspace of V' and
a subset {a;} of V, and then let e;a = a; for each ¢ € I and extend this map
linearly to V' . To shorten this process, we simply say, given {e;} and {a;}
within the context, then for each « € I(V'), we can write

o= ()

From this notation, it is easy to verify that {a;} is also linearly independent
since ker v = (0).
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A subspace U of V which is generated by a linearly independent subset {e; }
of V' is denoted by (e;) and when we write U = (e;), we mean that the set {e;}
is a basis of U, and we have dim U = |I|. For each o € I(V'), the kernel and the
range of « are denoted by ker o and Vv, respectively. If we write Ua = (u;a),
it means that u; € U Ndom « for all 7. In addition, we can show that {u;} is
linearly independent.

It is well-known that the injective linear transformation semigroup, I(V'),
is regular but the following example shows that I(V, W) is not regular when
V#EW.

Example. Let W = (v;) and V = (v1,v2) and define a = (zf) Since
dom o = (vg) and ve ¢ W, we obtain for each 5 € I(V,W) dom fa = (im SN
dom o)~ = (0) which implies that fa = (8). Thus afa = (8) # «. Therefore

« is not regular.

Theorem 2. Let o € I(V,W). Then « is regular if and only if o« € I(W).
Consequently, I(W) is the largest regular subsemigroup of I(V, W).

Proof. Let a be regular. Then there is g € I(V,W) such that a = afa.
Suppose that dom a = (v;) and a = (ZIZ) For each i, we obtain v;a = v;afa =
w; B which implies that v; = w; 8 € W since « is injective. Hence dom o« C W.
Conversely, let a € I(W). Then we can write o = (Zi) where (u;) and (w;) are

subspaces of W. Define g = (1::), we obtain o = afa, as required. O

Lemma 3. Let o, € I(V,W). Then Va C W} if and only if & = [ for
some vy € I(V,W).

Proof. Let Va C W5. We can write

(¥ ’U)i UV,
= ()= (i)

where (w;) € W. Let v = (%). It is a routine matter to show that ker~ = (0).
Hence, we have v € I(V,W) and a = vf. The converse is clear. O
By the above lemma, we obtain the following result immediately.

Lemma 4. Let a € I(V,W). If 3 € I(W), then Va C V3 if and only if
a = vp for some v € I(V,W).

Now, we characterize Green’s relations on I(V, W) as follows.

Theorem 5. Let o, € I(V,W). Then aLp if and only if (o, 3 € I(W)
and Va=Vp) or (o, € I(V,W)\ I(W) and a = ).
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Proof. Assume that aLB. Then a = AS and 8 = pa for some A\, pu €
I(V,W)L If a € I(W) and (A = 1 or u = 1), then 3 = a € I(W) and so
Va = V. On the other hand, suppose that o € I(W) and A\, € I[(V,W).
Let v € dom . Then vf = vua = (vpA)B and so v = vu since [ is injective.
Thus dom g C W, that is, 8 € I[(W). From o = A§ and 8 = pa, we obtain
Va C VB C Va by Lemma 4. Now, suppose that o € I[(V,W)\ I(W). If
A € I(V,W), then va = v\ = vApa and thus v = vAp € W, for all
v € dom «a, since « is injective. Hence dom o« C W, that is o € I(W), which is
a contradiction. Therefore A\=1or p=1and so f =« € I[(V,IW)\ I(W).

The converse is clear by Lemma 4. O

Theorem 6. Let o, € I(V,W). Then dom o C dom f if and only if
a = B for some v € I(V,W). Consequently, «Rj in I[(V,W) if and only if
dom « = dom S.

Proof. If a = B~ for some ~ € I(V,W), then clearly dom o C dom gS.
Conversely, suppose that dom o C dom . Then we can write

(¥ (o UV,
=)= )

Now, being v = (Zg), we have v € I(V, W) and o = (3, as required. O

Corollary 7. Let o, € I(V,W). If RS, Then o, € I(W) or o, 3 €
IV, W)\ I(W).

Proof. Suppose that aRS. If « € I(W), then dom f = dom a« C W
which implies that 8 € I(W). On the other hand, if o € I(V, W) \ I(W), then
dom 8 =dom o € W and so 3 ¢ I(W). O

As a direct consequence of Theorem 5, Theorem 6 and Corollary 7, we have
the following corollary.

Corollary 8. Let o, € I(V,W). Then aHp if and only if (o, 5 € I(W),
Va =V and dom a = dom ) or (o, 5 € I(V, W)\ I(W) and oo = f3).

Theorem 9. Let a,f € I(V,W). Then oDf if and only if (a, € I(W)
and dim(dom «) = dim(dom f3)) or (o, € I(V,W)\ I(W) and dom a =
dom f).

Proof. Assume that aLyRf for some v € I(V,W). Since aL, if « € I(W),
then v € I(W) and Va = V+ by Theorem 5. Furthermore, from vRj, it follows
that 8 € I(W) and dom v = dom S by Corollary 7 and Theorem 6. Hence
dim(dom «) = dim(Va) = dim(Vy) = dim(dom 7) = dim(dom ). On the
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other hand, if « € I(V, W)\ I(W), then v € I(V,W)\ I(W) and o« = y by
Theorem 5. It follows that g € I(V, W)\ I(W) and dom v = dom /3, whence
dom o = dom v = dom £.

Conversely, assume that the conditions hold. If o, f € I(W) and dim(dom «)
= dim(dom f), then we can write

o= ) mao= ()
where (u;), (vi), (ws), (w;

;) € W. Hence, being v = (;’}2) € I(W), we have
Va =V~ and dom v = dom g which implies that aLyR /. On the other hand,
if a,8 € I(V,W)\ I(W) and dom o = dom S, then aRfS and so oDf, as
required. O

In order to characterize the J — relation on I(V, W), the following lemma
is needed.

Lemma 10. Let o, 8 € I(V,W). If « = A\Sp for some \ € I(V,W) and
p € I(V,W)! then dim(Va) < dim(W3).

Proof. Since Va = (VA)Bu C Wk, we have dim(Va) < dim(Wu). Let
W B = (wip) where {w;} € Wp. Then (w;) C W/ which implies that

dim(WBu) = dim(w;p) = dim(w;) < dim(Wp).
Therefore, dim(Vea) < dim(W 3). O
Theorem 11. Let o, € I(V,W). Then aJp if and only if dom o =
dom § or dim(Va) = dim(Wa) = dim(W5) = dim(V B).

Proof. Assume that aJfS. Then o = ABu and 5 = Aau for some
MA s € IV, W)L IfX=1= ), then a = Bu and B = ap and so aR}f.
Thus dom a = dom . If either A or A belongs to I(V,W), then o = o35 and
B =0cad for some o,0 € [(V,W) and 6,6 € I(V,W)!. Thus, by Lemma 10,
it follows that

dim(Wp) > dim(Va) > dim(Wa) > dim(V3) > dim(W ).

Whence dim(Va) = dim(Wa) = dim(Wj3) = dim(V 3).

Conversely, assume that the conditions hold. If dom a = dom §, then aR 3,
and so aJp. If dim(Va) = dim(Wa) = dim(Wg) = dim(V ), then by using
the equality dim(Va) = dim(W ), we can write

SOETHEE
W wi wj
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’

where (v;) € W and v; ¢ W for all j. Now, define A = (7;’) and pu = (w)
Thus A\, u € I(V,W) and o = AfBu. Similarly, by using the equahty dim(V3) =

dim(Wa), we can find A, € I(V,W) such that 8 = X ap . Therefore, a7 3,
as required. O

Corollary 12. Ifa,p € I(W), then aJ S on I(V,W) if and only if aDj3
on I(V,W).

Proof. In general, we have D C J. Let o, f € I(W) and aJ B on I(V,W).
Then dom o = dom 3 or dim(Va) = dim(Wa) = dim(Wp) = dim(Vg). If
dom a = dom (3, then

dim(Vea) = dim(dom «a/ ker o) = dim(dom 53/ ker ) = dim(V 3).

Thus, both cases imply dim(dom a) = dim(Va) = dim(V ) = dim(dom )
and aDf on PT(V,W) by Theorem 9. O

Theorem 13. D = 7 on I(V,W) if and only if dim W is finite or V.= W.

Proof. Tt is clear that if V.= W, then I(V,W) = I(V) which follows that
D = J by Corollary 12. Suppose that dim W is finite. Let a, 8 € I(V,W)
with aJ 8. If dom a = dom [, then aRfS and hence aDS. Now, assume that
dim(Va) = dim(Wa) = dim(W ) = dim(V ). Since dim W is finite, we have
dim(Vea),dim(V ) are finite, and it follows that Va = Wa and V = W§.
Let v € dom . Then va = wa for some w € W from which it follows that
v =w € W since « is injective, so o € I(W). Similarly, we obtain g € I(W).
In addition, we have dim(dom «) = dim(Va) = dim(V3) = dim(dom p5).
Therefore, aDS and the other containment is clear.

Conversely, suppose that dim W is infinite and W C V. Let W = (v;) and
V = (v;) @ (vj). Then there is an infinite countable subset {u,} of {v;} where
n € N. Let v € {v;} and define a, 3 by

. v U2n,
a_<U1 uQn>’5 <u1 u4n>'
Then o, f € I(V,W)\ I(W) and dim(Va) = dim(Wa) = Ry = dim(Wp3) =

dim(V 3), so aJ . Since dom « # dom 3, we have « and [ are not D-related
on I(V,W). O

3. Partial Orders

Recall that the natural partial order on any semigroup S is defined by

a < b if and only if @ = zb = by, za = a for some z,y € S*,
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or equivalently
a < bif and only if @ = wb = bz, az = a for some w,z € S*. (1)

Since I(V, W) is not regular in general, we use (1) to define the partial order
on the semigroup I(V, W), that is for each o, 8 € I(V, W)

a < g if and only if a =68 = Bu, a = au for some’y,,uEI(V,W)l.

We note that if W C V, then I(V,W) has no identity elements. So, in this
case, [(V, W)t #£ I(V,W).

Now, we aim to characterize this partial order on I(V,W) as follows.

Theorem 14. Let o, € I(V,W). Then o < § if and only if « = f or
the following statements hold.

(1) Va C W§.

(2) dom a C dom f.

(3) For each v € dom 3, if v3 € Ve, then v € dom « and va = v.

Proof. Suppose that a < 3. Then there exist v,u € I(V,W)! such that
a=78=pFpand a =au. f y=1or p=1, then a = . If y,u € I(V,W),
then (1) and (2) hold by Lemma 3 and Theorem 6. If v € dom 5 and vf € Va,
then v = wa for some w € V', thus

vf = wa = wap = vPu = va.

Therefore, v € dom a and va = vf. Conversely, assume that the conditions
(1)-(3) hold. Again by Lemma 3 and Theorem 6, there exist v, n € I(V, W) such
that a = v = Su. Now, we prove that Va C dom p, by letting w € Va. Then
there is v € dom « such that va = w. Since a = 3, we have w = va = vyf.
By (3), vy € dom « and vya = vyf. Thus vy = vya = vyfBu = wu which
implies that w € dom p. So Va C dom u. Hence

dom ap = (im aNdom p)a™ ! = (im a)a™! = dom a.

For each v € dom a, va = vyf. Again by (3), vy € dom « and vya = vyp.
Thus

va = vy = vya = vyBu = vapu.
Therefore, a = ap. O
If we regard «, € I(X) as subsets of X x X it is easy to see that

«a C g if and only if dom o C dom 8 and x«a = x for all x € dom «.
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And we also have C is a partial order on I(X). Since I(V, W) is a subsemigroup
of I(X), it is clear that C is also a partial order on I(V,W).

In [3], we have the natural partial order and the subset order are the same on
I(X) but the following example shows that it is false on I(V, W) when W C V.

Example. Let V = (u,v,w) and W = (v, w). Define

u u v
= ()=o)
Then a C 8 but Va = (v) € (w) = W . Therefore v £ f3.

Theorem 15. For o, € [(V,W), a < 8 implies o C f3.

Proof. Let «, 8 € I(V,W) be such that « < . By Theorem 14, we have
dom o C dom S, and for each v € dom «, va € Va C W3 which implies that
va = wp for some w € W, hence wfs € Va. Again by Theorem 14, we have
w € dom « and wa = wh. So va = wa and v = w since « is injective. Thus
va = v and therefore o C . O

By the above lemma, we can see that < C C on I(V,W). So it is clear that
the meet and join of these two partial orders are < and C, respectively.

To determine when these two relations on I(V, W) are equal, we note that
the zero linear transformation is a zero map having domain as (0) and denoted
by 0. It is easy to verify that 0 < «, for all a € I(V,W).

Theorem 16. On I[(V,W), C = < ifand only if V=W or dimW = 1.

Proof. If V.= W, then I(V,W) = I(V). Let o, € I(V) be such that
a C B. Then Va C V3 and dom o C dom (. Let v € dom 3 be such that
vfB € Va. We obtain v8 = ua for some u € V and then v = ua = uf since
a C B. Thus u = v which implies that v € dom « and va = vB. Therefore,
a < B by Theorem 14. If dim W = 1, let W = (w), thus

IV, W) = {(Z) v V} U {o}.

So we see that for each «, 5 € I(V, W) with a C 3, then o < 8. It is concluded
that C = <.

Now, suppose that C = <. If W C V and dim W > 1, then we can write
W = (w;) and V = (w;) ® (vj). Choose v € {v;} and w,w € {w;} such that

w # w . Define
R (v ow
=\ w y b= w o w )
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Then it is clear that o C 3. Since C = <, we get o < 8 from which follows that
(w) =Va C WS = (w) and this leads to a contradiction. Therefore, V. =W
or dimW = 1. O

Now, we deal with the compatibility of elements in I(V,W). Let < be a
partial order on a semigroup S. An element ¢ € S is said to be left [right]
compatible if ca < ¢b [ac = bc] for each a,b € S such that a < b.

It is easy to see that every element in I(V, W) is left and right compatible
with respect to C.

To characterize all elements in I(V, W) those compatible with respect to <,
we first prove the following lemma.

Lemma 17. Let dimW =1 and o, € I(V,W). If & < 3, then o = 3 or
a=0.

Proof. Suppose that a < f and a # 0. So 1 < dim(Va) < dimW =1, and
that Va = W. For each v € dom 3, v € V3 C W = Va and hence v € dom «
and va = vf by Theorem 14(3). Thus dom 5 C dom «. Since o < 3, we have
dom « C dom . Therefore, dom o = dom § which implies that o = . O

By Lemma 17, we can show that if dimW = 1, then ~ is left and right
compatible with respect to <.

It is clear that for each v € I(V,W), dom v C W if and only if W = V~.
We use this fact to prove the following theorem.

Theorem 18. Let dimW > 1 and 0 # v € I[(V,W). Then

(1) v is left compatible with respect to < if and only if dom v C W or
dim(V~y) = 1.

(2) v is always right compatible with respect to <.

Proof. (1) Suppose that dom v € W and dim(V~y) > 1. Then W~ C V7.

We can write Vy = Wy & (w;). Choose w;, € {w;} and w € V~ such that
{w;,,w} is linearly independent. Define «, 5 € I(V, W) by

o Wiy . Wy W
a_(wil >”8—(wi1 w>'

We can see that v < 3. Since Vya = (w;,) # (w;,, w) = VB, we get ya # 0.
Since w;, € Vya but w;, ¢ W~S3, we have Vya € W~ which follows that
ya £ yf3. Therefore, 7 is not left compatible.

Conversely, let o, € I(V,WW) be such that a < . Then o« C f by
Theorem 15. If dom v C W, then W~ = V~. So we have Vya C VB8 = Wrg.
By the left compatibility of v with respect to C, we obtain ya C ~f which
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implies that dom ya C dom ~f5. Let v € dom 8 and vy8 € V~ya. Then
(vy)B € Va from which follows that vya = vyf since a < (. Therefore,
o < vB. Now, if dim(Vy) = 1, then we can write v = (?). If w ¢ dom a,
then ya = 0 from which follows that va < 3. If w € dom «, then w € dom £
since dom a C dom S and hence dom ya = {v} = dom 7. Furthermore,
vya = wa = wf = vy since a C B. Therefore, ya = 0.

(2) Let o, 8 € I(V,W) be such that « < . Then a C § from which
it follows that ay C pv. So dom ay C dom (7. Since a < 3, we have
Vay C WpBvy. Let vy € Vay. Then vpy = way for some w € V. Since
~ is injective, we get v = wa € Va which implies that v = va. Hence
vBy = vary, and therefore ay < 7. O
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