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Abstract: Let V be any vector space and I(V ) the set of all partial injective
linear transformations defined on V , that is, all injective linear transformations
α : A → B where A,B are subspaces of V . Then I(V ) is a semigroup under
composition. Let W be a subspace of V . Define I(V,W ) = {α ∈ I(V ) : V α ⊆
W}. So I(V,W ) is a subsemigroup of I(V ). In this paper, we present the
largest regular subsemigroup of I(V,W ) and determine its Green’s relations.
Furthermore, we study the natural partial order ≤ on I(V,W ) in terms of
domains and images, compare ≤ with the subset order and find elements of
I(V,W ) which are compatible.
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1. Introduction

The partial transformation semigroup on the set X, denoted P (X), is the set
of all functions from a subset of X into X, with the operation of composition.
In addition, the semigroups T (X) and I(X) are defined by:
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T (X) = {α ∈ P (X) : dom α = X},

I(X) = {α ∈ P (X) : α is injective}.

T (X) and I(X) are called the full transformation semigroup and the symmetric
inverse semigroup, respectively. It is well-known that P (X), T (X) are regular
and I(X) is an inverse semigroup.

Now, we introduce the partial transformation semigroup with restricted
range. Let Y be a subset of X. We consider the semigroup PT (X,Y ), T (X,Y )
and I(X,Y ) defined by PT (X,Y ) = {α ∈ P (X) : Xα ⊆ Y }, T (X,Y ) =
T (X) ∩ PT (X,Y ) and I(X,Y ) = I(X) ∩ PT (X,Y ) . Clearly, PT (X,X) =
P (X), T (X,X) = T (X), I(X,X) = I(X) and PT (X, ∅) = {∅} = I(X, ∅).

In 2008, Sanwong and Sommanee [7] obtained the largest regular subsemi-
group of T (X,Y ) and a class of its maximal inverse subsemigroups. Further,
they characterized Green’s relations on T (X,Y ). In [2], Fernandes and San-
wong proved that PF = {α ∈ PT (X,Y ) : Xα = Y α} and I(Y ) are the largest
regular subsemigroups of PT (X,Y ) and I(X,Y ), respectively. Moreover, they
determined Green’s relations on PT (X,Y ) and I(X,Y ).

Analogously to P (X), we can define a partial linear transformation on some
vector spaces. Let V be any vector space, P (V ) the set of all linear transfor-
mations α : S → T where S and T are subspaces of V , that is, every element
α ∈ P (V ), the domain and range of α are subspaces of V . Then we have P (V )
under composition is a semigroup and it is called the partial linear transforma-
tion semigroup of V . The full linear transformation semigroup, T (V ), and the
injective linear transformation semigroup, I(V ) are defined as follows.

T (V ) = {α ∈ P (V ) : dom α = V },

I(V ) = {α ∈ P (V ) : α is injective}.

Similarly, the linear transformation semigroups with restricted range can
be defined as follows. For any vector space V and a subspace W of V , let
PT (V,W ) = {α ∈ P (V ) : V α ⊆ W}, T (V,W ) = T (V ) ∩ PT (V,W ) and
I(V,W ) = I(V ) ∩ PT (V,W ). Obviously, PT (V, V ) = P (V ), T (V, V ) = T (V )
and I(V, V ) = I(V ). Hence we may regard PT (V,W ), T (V,W ) and I(V,W )
as generalizations of P (V ), T (V ) and I(V ), respectively.

Now, we deal with a natural partial order or Mitsch order [4] on any semi-
group S defined by for a, b ∈ S,

a ≤ b if and only if a = xb = by, xa = a for some x, y ∈ S1.

Recently, Sangkhanan and Sanwong [5] characterized the natural partial
order ≤ and the subset order ⊆ on PT (X,Y ), described the meet and join of ≤
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and ⊆. They also compared ≤, ⊆ with other partial orders and found elements
of PT (X,Y ) which are compatible with ≤.

In 2005, Sullivan [8] studied the natural partial order ≤ and the subset order
⊆ on P (V ). The author determined the meet and join of these two partial orders
and also found all elements of P (V ) which are compatible with respect to ≤.
In [6], the authors presented the largest regular subsemigroup and determine
Green’s relations on PT (V,W ). Furthermore, they studied the natural partial
order ≤ on PT (V,W ) in terms of domains and images, compared ≤ with the
subset order, characterized the meet and join of these two orders, and found
elements of PT (V,W ) which are compatible.

In this paper, we describe the largest regular subsemigroup of I(V,W ) and
characterized its Green’s relations. Furthermore, we study the natural partial
order ≤ on I(V,W ) in terms of domains and images, compare ≤ with the subset
order and characterize elements of I(V,W ) which are compatible.

2. Regularity and Green’s Relations on I(V,W )

We begin this section with the following simple result on I(V,W ) which will be
used through out the paper. Here V α = {vα : v ∈ V ∩ dom α}.

Lemma 1. If S and T are subspaces of V with S ⊆ T , then Sα ⊆ Tα for
all α ∈ I(V,W ).

For convenience, we adopt the convention used in [1] namely, if α ∈ P (X)
then we write

α =

(

Xi

ai

)

.

and take as understood that the subscript i belongs to some (unmentioned)
index set I, the abbreviation {ai} denotes {ai : i ∈ I}, and that Xα = {ai}
and aiα

−1 = Xi.
Similarly, we can use this notation for elements in I(V ). To define a linear

transformation α ∈ I(V ), we first choose a basis {ei} for a subspace of V and
a subset {ai} of V , and then let eiα = ai for each i ∈ I and extend this map
linearly to V . To shorten this process, we simply say, given {ei} and {ai}
within the context, then for each α ∈ I(V ), we can write

α =

(

ei
ai

)

.

From this notation, it is easy to verify that {ai} is also linearly independent
since kerα = 〈0〉.
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A subspace U of V which is generated by a linearly independent subset {ei}
of V is denoted by 〈ei〉 and when we write U = 〈ei〉, we mean that the set {ei}
is a basis of U , and we have dimU = |I|. For each α ∈ I(V ), the kernel and the
range of α are denoted by kerα and V α, respectively. If we write Uα = 〈uiα〉,
it means that ui ∈ U ∩ dom α for all i. In addition, we can show that {ui} is
linearly independent.

It is well-known that the injective linear transformation semigroup, I(V ),
is regular but the following example shows that I(V,W ) is not regular when
V 6= W .

Example. Let W = 〈v1〉 and V = 〈v1, v2〉 and define α =
(

v2
v1

)

. Since
dom α = 〈v2〉 and v2 /∈ W , we obtain for each β ∈ I(V,W ) dom βα = (im β ∩
dom α)β−1 = 〈0〉 which implies that βα =

(0
0

)

. Thus αβα =
(0
0

)

6= α. Therefore
α is not regular.

Theorem 2. Let α ∈ I(V,W ). Then α is regular if and only if α ∈ I(W ).
Consequently, I(W ) is the largest regular subsemigroup of I(V,W ).

Proof. Let α be regular. Then there is β ∈ I(V,W ) such that α = αβα.
Suppose that dom α = 〈vi〉 and α =

(

vi
wi

)

. For each i, we obtain viα = viαβα =
wiβα which implies that vi = wiβ ∈ W since α is injective. Hence dom α ⊆ W .
Conversely, let α ∈ I(W ). Then we can write α =

(

ui

wi

)

where 〈ui〉 and 〈wi〉 are

subspaces of W . Define β =
(

wi

ui

)

, we obtain α = αβα, as required.

Lemma 3. Let α, β ∈ I(V,W ). Then V α ⊆ Wβ if and only if α = γβ for
some γ ∈ I(V,W ).

Proof. Let V α ⊆ Wβ. We can write

α =

(

vi
wi

)

, β =

(

w′
i vj

wi wj

)

where 〈w′
i〉 ⊆ W . Let γ =

(

vi
w′

i

)

. It is a routine matter to show that ker γ = 〈0〉.

Hence, we have γ ∈ I(V,W ) and α = γβ. The converse is clear.

By the above lemma, we obtain the following result immediately.

Lemma 4. Let α ∈ I(V,W ). If β ∈ I(W ), then V α ⊆ V β if and only if
α = γβ for some γ ∈ I(V,W ).

Now, we characterize Green’s relations on I(V,W ) as follows.

Theorem 5. Let α, β ∈ I(V,W ). Then αLβ if and only if (α, β ∈ I(W )
and V α = V β) or (α, β ∈ I(V,W ) \ I(W ) and α = β).
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Proof. Assume that αLβ. Then α = λβ and β = µα for some λ, µ ∈
I(V,W )1. If α ∈ I(W ) and (λ = 1 or µ = 1), then β = α ∈ I(W ) and so
V α = V β. On the other hand, suppose that α ∈ I(W ) and λ, µ ∈ I(V,W ).
Let v ∈ dom β. Then vβ = vµα = (vµλ)β and so v = vµλ since β is injective.
Thus dom β ⊆ W , that is, β ∈ I(W ). From α = λβ and β = µα, we obtain
V α ⊆ V β ⊆ V α by Lemma 4. Now, suppose that α ∈ I(V,W ) \ I(W ). If
λ, µ ∈ I(V,W ), then vα = vλβ = vλµα and thus v = vλµ ∈ W , for all
v ∈ dom α, since α is injective. Hence dom α ⊆ W , that is α ∈ I(W ), which is
a contradiction. Therefore λ = 1 or µ = 1 and so β = α ∈ I(V,W ) \ I(W ).

The converse is clear by Lemma 4.

Theorem 6. Let α, β ∈ I(V,W ). Then dom α ⊆ dom β if and only if
α = βγ for some γ ∈ I(V,W ). Consequently, αRβ in I(V,W ) if and only if
dom α = dom β.

Proof. If α = βγ for some γ ∈ I(V,W ), then clearly dom α ⊆ dom β.
Conversely, suppose that dom α ⊆ dom β. Then we can write

α =

(

vi
wi

)

, β =

(

vi vj
w′
i wj

)

Now, being γ =
(

w′

i

wi

)

, we have γ ∈ I(V,W ) and α = βγ, as required.

Corollary 7. Let α, β ∈ I(V,W ). If αRβ, Then α, β ∈ I(W ) or α, β ∈
I(V,W ) \ I(W ).

Proof. Suppose that αRβ. If α ∈ I(W ), then dom β = dom α ⊆ W
which implies that β ∈ I(W ). On the other hand, if α ∈ I(V,W ) \ I(W ), then
dom β = dom α * W and so β /∈ I(W ).

As a direct consequence of Theorem 5, Theorem 6 and Corollary 7, we have
the following corollary.

Corollary 8. Let α, β ∈ I(V,W ). Then αHβ if and only if (α, β ∈ I(W ),
V α = V β and dom α = dom β) or (α, β ∈ I(V,W ) \ I(W ) and α = β).

Theorem 9. Let α, β ∈ I(V,W ). Then αDβ if and only if (α, β ∈ I(W )
and dim(dom α) = dim(dom β)) or (α, β ∈ I(V,W ) \ I(W ) and dom α =
dom β).

Proof. Assume that αLγRβ for some γ ∈ I(V,W ). Since αLγ, if α ∈ I(W ),
then γ ∈ I(W ) and V α = V γ by Theorem 5. Furthermore, from γRβ, it follows
that β ∈ I(W ) and dom γ = dom β by Corollary 7 and Theorem 6. Hence
dim(dom α) = dim(V α) = dim(V γ) = dim(dom γ) = dim(dom β). On the
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other hand, if α ∈ I(V,W ) \ I(W ), then γ ∈ I(V,W ) \ I(W ) and α = γ by
Theorem 5. It follows that β ∈ I(V,W ) \ I(W ) and dom γ = dom β, whence
dom α = dom γ = dom β.

Conversely, assume that the conditions hold. If α, β ∈ I(W ) and dim(dom α)
= dim(dom β), then we can write

α =

(

ui
wi

)

and β =

(

vi
w′
i

)

where 〈ui〉, 〈vi〉, 〈wi〉, 〈w
′
i〉 ⊆ W . Hence, being γ =

(

vi
wi

)

∈ I(W ), we have
V α = V γ and dom γ = dom β which implies that αLγRβ. On the other hand,
if α, β ∈ I(V,W ) \ I(W ) and dom α = dom β, then αRβ and so αDβ, as
required.

In order to characterize the J − relation on I(V,W ), the following lemma
is needed.

Lemma 10. Let α, β ∈ I(V,W ). If α = λβµ for some λ ∈ I(V,W ) and
µ ∈ I(V,W )1, then dim(V α) ≤ dim(Wβ).

Proof. Since V α = (V λ)βµ ⊆ Wβµ, we have dim(V α) ≤ dim(Wβµ). Let
Wβµ = 〈wiµ〉 where {wi} ⊆ Wβ. Then 〈wi〉 ⊆ Wβ which implies that

dim(Wβµ) = dim〈wiµ〉 = dim〈wi〉 ≤ dim(Wβ).

Therefore, dim(V α) ≤ dim(Wβ).

Theorem 11. Let α, β ∈ I(V,W ). Then αJ β if and only if dom α =
dom β or dim(V α) = dim(Wα) = dim(Wβ) = dim(V β).

Proof. Assume that αJ β. Then α = λβµ and β = λ′αµ′ for some
λ, λ′, µ, µ′ ∈ I(V,W )1. If λ = 1 = λ′, then α = βµ and β = αµ′ and so αRβ.
Thus dom α = dom β. If either λ or λ′ belongs to I(V,W ), then α = σβδ and
β = σ′αδ′ for some σ, σ′ ∈ I(V,W ) and δ, δ′ ∈ I(V,W )1. Thus, by Lemma 10,
it follows that

dim(Wβ) ≥ dim(V α) ≥ dim(Wα) ≥ dim(V β) ≥ dim(Wβ).

Whence dim(V α) = dim(Wα) = dim(Wβ) = dim(V β).
Conversely, assume that the conditions hold. If dom α = dom β, then αRβ,

and so αJ β. If dim(V α) = dim(Wα) = dim(Wβ) = dim(V β), then by using
the equality dim(V α) = dim(Wβ), we can write

α =

(

ui
wi

)

and β =

(

vi vj
w′
i wj

)
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where 〈vi〉 ⊆ W and vj /∈ W for all j. Now, define λ =
(

ui

vi

)

and µ =
(

w′

i

wi

)

.
Thus λ, µ ∈ I(V,W ) and α = λβµ. Similarly, by using the equality dim(V β) =
dim(Wα), we can find λ′, µ′ ∈ I(V,W ) such that β = λ′αµ′. Therefore, αJ β,
as required.

Corollary 12. If α, β ∈ I(W ), then αJ β on I(V,W ) if and only if αDβ
on I(V,W ).

Proof. In general, we have D ⊆ J . Let α, β ∈ I(W ) and αJ β on I(V,W ).
Then dom α = dom β or dim(V α) = dim(Wα) = dim(Wβ) = dim(V β). If
dom α = dom β, then

dim(V α) = dim(dom α/ kerα) = dim(dom β/ ker β) = dim(V β).

Thus, both cases imply dim(dom α) = dim(V α) = dim(V β) = dim(dom β)
and αDβ on PT (V,W ) by Theorem 9.

Theorem 13. D = J on I(V,W ) if and only if dimW is finite or V = W .

Proof. It is clear that if V = W , then I(V,W ) = I(V ) which follows that
D = J by Corollary 12. Suppose that dimW is finite. Let α, β ∈ I(V,W )
with αJ β. If dom α = dom β, then αRβ and hence αDβ. Now, assume that
dim(V α) = dim(Wα) = dim(Wβ) = dim(V β). Since dimW is finite, we have
dim(V α),dim(V β) are finite, and it follows that V α = Wα and V β = Wβ.
Let v ∈ dom α. Then vα = wα for some w ∈ W from which it follows that
v = w ∈ W since α is injective, so α ∈ I(W ). Similarly, we obtain β ∈ I(W ).
In addition, we have dim(dom α) = dim(V α) = dim(V β) = dim(dom β).
Therefore, αDβ and the other containment is clear.

Conversely, suppose that dimW is infinite and W ( V . Let W = 〈vi〉 and
V = 〈vi〉 ⊕ 〈vj〉. Then there is an infinite countable subset {un} of {vi} where
n ∈ N. Let v ∈ {vj} and define α, β by

α =

(

v un
u1 u2n

)

, β =

(

v u2n
u1 u4n

)

.

Then α, β ∈ I(V,W ) \ I(W ) and dim(V α) = dim(Wα) = ℵ0 = dim(Wβ) =
dim(V β), so αJ β. Since dom α 6= dom β, we have α and β are not D-related
on I(V,W ).

3. Partial Orders

Recall that the natural partial order on any semigroup S is defined by

a ≤ b if and only if a = xb = by, xa = a for some x, y ∈ S1,
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or equivalently

a ≤ b if and only if a = wb = bz, az = a for some w, z ∈ S1. (1)

Since I(V,W ) is not regular in general, we use (1) to define the partial order
on the semigroup I(V,W ), that is for each α, β ∈ I(V,W )

α ≤ β if and only if α = γβ = βµ, α = αµ for some γ, µ ∈ I(V,W )1.

We note that if W ( V , then I(V,W ) has no identity elements. So, in this
case, I(V,W )1 6= I(V,W ).

Now, we aim to characterize this partial order on I(V,W ) as follows.

Theorem 14. Let α, β ∈ I(V,W ). Then α ≤ β if and only if α = β or
the following statements hold.

(1) V α ⊆ Wβ.
(2) dom α ⊆ dom β.
(3) For each v ∈ dom β, if vβ ∈ V α, then v ∈ dom α and vα = vβ.

Proof. Suppose that α ≤ β. Then there exist γ, µ ∈ I(V,W )1 such that
α = γβ = βµ and α = αµ. If γ = 1 or µ = 1, then α = β. If γ, µ ∈ I(V,W ),
then (1) and (2) hold by Lemma 3 and Theorem 6. If v ∈ dom β and vβ ∈ V α,
then vβ = wα for some w ∈ V , thus

vβ = wα = wαµ = vβµ = vα.

Therefore, v ∈ dom α and vα = vβ. Conversely, assume that the conditions
(1)-(3) hold. Again by Lemma 3 and Theorem 6, there exist γ, µ ∈ I(V,W ) such
that α = γβ = βµ. Now, we prove that V α ⊆ dom µ, by letting w ∈ V α. Then
there is v ∈ dom α such that vα = w. Since α = γβ, we have w = vα = vγβ.
By (3), vγ ∈ dom α and vγα = vγβ. Thus vγβ = vγα = vγβµ = wµ which
implies that w ∈ dom µ. So V α ⊆ dom µ. Hence

dom αµ = (im α ∩ dom µ)α−1 = (im α)α−1 = dom α.

For each v ∈ dom α, vα = vγβ. Again by (3), vγ ∈ dom α and vγα = vγβ.
Thus

vα = vγβ = vγα = vγβµ = vαµ.

Therefore, α = αµ.

If we regard α, β ∈ I(X) as subsets of X ×X, it is easy to see that

α ⊆ β if and only if dom α ⊆ dom β and xα = xβ for all x ∈ dom α.
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And we also have ⊆ is a partial order on I(X). Since I(V,W ) is a subsemigroup
of I(X), it is clear that ⊆ is also a partial order on I(V,W ).

In [3], we have the natural partial order and the subset order are the same on
I(X) but the following example shows that it is false on I(V,W ) when W ( V .

Example. Let V = 〈u, v, w〉 and W = 〈v,w〉. Define

α =

(

u

v

)

, β =

(

u v
v w

)

.

Then α ⊆ β but V α = 〈v〉 * 〈w〉 = Wβ. Therefore α � β.

Theorem 15. For α, β ∈ I(V,W ), α ≤ β implies α ⊆ β.

Proof. Let α, β ∈ I(V,W ) be such that α ≤ β. By Theorem 14, we have
dom α ⊆ dom β, and for each v ∈ dom α, vα ∈ V α ⊆ Wβ which implies that
vα = wβ for some w ∈ W , hence wβ ∈ V α. Again by Theorem 14, we have
w ∈ dom α and wα = wβ. So vα = wα and v = w since α is injective. Thus
vα = vβ and therefore α ⊆ β.

By the above lemma, we can see that ≤ ⊆ ⊆ on I(V,W ). So it is clear that
the meet and join of these two partial orders are ≤ and ⊆, respectively.

To determine when these two relations on I(V,W ) are equal, we note that
the zero linear transformation is a zero map having domain as 〈0〉 and denoted
by 0. It is easy to verify that 0 ≤ α, for all α ∈ I(V,W ).

Theorem 16. On I(V,W ), ⊆ = ≤ if and only if V = W or dimW = 1.

Proof. If V = W , then I(V,W ) = I(V ). Let α, β ∈ I(V ) be such that
α ⊆ β. Then V α ⊆ V β and dom α ⊆ dom β. Let v ∈ dom β be such that
vβ ∈ V α. We obtain vβ = uα for some u ∈ V and then vβ = uα = uβ since
α ⊆ β. Thus u = v which implies that v ∈ dom α and vα = vβ. Therefore,
α ≤ β by Theorem 14. If dimW = 1, let W = 〈w〉, thus

I(V,W ) =

{(

v

w

)

: v ∈ V

}

∪ {0}.

So we see that for each α, β ∈ I(V,W ) with α ⊆ β, then α ≤ β. It is concluded
that ⊆ = ≤.

Now, suppose that ⊆ = ≤. If W ( V and dimW > 1, then we can write
W = 〈wi〉 and V = 〈wi〉 ⊕ 〈vj〉. Choose v ∈ {vj} and w,w′ ∈ {wi} such that
w 6= w′. Define

α =

(

v
w

)

, β =

(

v w
w w′

)

.
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Then it is clear that α ⊆ β. Since ⊆ = ≤, we get α ≤ β from which follows that
〈w〉 = V α ⊆ Wβ = 〈w′〉 and this leads to a contradiction. Therefore, V = W
or dimW = 1.

Now, we deal with the compatibility of elements in I(V,W ). Let � be a
partial order on a semigroup S. An element c ∈ S is said to be left [right]
compatible if ca � cb [ac � bc] for each a, b ∈ S such that a � b.

It is easy to see that every element in I(V,W ) is left and right compatible
with respect to ⊆.

To characterize all elements in I(V,W ) those compatible with respect to ≤,
we first prove the following lemma.

Lemma 17. Let dimW = 1 and α, β ∈ I(V,W ). If α ≤ β, then α = β or
α = 0.

Proof. Suppose that α ≤ β and α 6= 0. So 1 ≤ dim(V α) ≤ dimW = 1, and
that V α = W . For each v ∈ dom β, vβ ∈ V β ⊆ W = V α and hence v ∈ dom α
and vα = vβ by Theorem 14(3). Thus dom β ⊆ dom α. Since α ≤ β, we have
dom α ⊆ dom β. Therefore, dom α = dom β which implies that α = β.

By Lemma 17, we can show that if dimW = 1, then γ is left and right
compatible with respect to ≤.

It is clear that for each γ ∈ I(V,W ), dom γ ⊆ W if and only if Wγ = V γ.
We use this fact to prove the following theorem.

Theorem 18. Let dimW > 1 and 0 6= γ ∈ I(V,W ). Then
(1) γ is left compatible with respect to ≤ if and only if dom γ ⊆ W or

dim(V γ) = 1.
(2) γ is always right compatible with respect to ≤.

Proof. (1) Suppose that dom γ * W and dim(V γ) > 1. Then Wγ ( V γ.
We can write V γ = Wγ ⊕ 〈wi〉. Choose wi1 ∈ {wi} and w ∈ V γ such that
{wi1 , w} is linearly independent. Define α, β ∈ I(V,W ) by

α =

(

wi1

wi1

)

, β =

(

wi1 w
wi1 w

)

.

We can see that α ≤ β. Since V γα = 〈wi1〉 6= 〈wi1 , w〉 = V γβ, we get γα 6= γβ.
Since wi1 ∈ V γα but wi1 /∈ Wγβ, we have V γα * Wγβ which follows that
γα � γβ. Therefore, γ is not left compatible.

Conversely, let α, β ∈ I(V,W ) be such that α ≤ β. Then α ⊆ β by
Theorem 15. If dom γ ⊆ W , then Wγ = V γ. So we have V γα ⊆ V γβ = Wγβ.
By the left compatibility of γ with respect to ⊆, we obtain γα ⊆ γβ which
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implies that dom γα ⊆ dom γβ. Let v ∈ dom γβ and vγβ ∈ V γα. Then
(vγ)β ∈ V α from which follows that vγα = vγβ since α ≤ β. Therefore,
γα ≤ γβ. Now, if dim(V γ) = 1, then we can write γ =

(

v

w

)

. If w /∈ dom α,
then γα = 0 from which follows that γα ≤ γβ. If w ∈ dom α, then w ∈ dom β
since dom α ⊆ dom β and hence dom γα = {v} = dom γβ. Furthermore,
vγα = wα = wβ = vγβ since α ⊆ β. Therefore, γα = γβ.

(2) Let α, β ∈ I(V,W ) be such that α ≤ β. Then α ⊆ β from which
it follows that αγ ⊆ βγ. So dom αγ ⊆ dom βγ. Since α ≤ β, we have
V αγ ⊆ Wβγ. Let vβγ ∈ V αγ. Then vβγ = wαγ for some w ∈ V . Since
γ is injective, we get vβ = wα ∈ V α which implies that vβ = vα. Hence
vβγ = vαγ, and therefore αγ ≤ βγ.
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