International Journal of Pure and Applied Mathematics Volume 80 No. 4 2012, 573-583

ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu

HERMITE-HADAMARD-LIKE AND SIMPSON-LIKE TYPE INTEGRAL INEQUALITIES VIA φ -CONVEXITY

Jaekeun Park

Department of Mathematics Hanseo University Seosan, Chungnam, 356-706, KOREA

Abstract: In this article, we obtain some Hermite-Hadamard-like and Simpson-like type integral inequalities for functions whose derivatives in absolute value at certain powers are φ -convex.

AMS Subject Classification: 26D10, 26A51

Key Words: Hermite-Hadamard inequality, Simpson's inequality, φ -convexity

1. Introduction

The following double inequality is known in the literature as Hermite-Hadamard integral inequality for convex functions: For a convex function $f:I\subset R\to R$ defined on the interval I of real numbers and $a,b\in I$ with a< b, the following double inequality holds:

$$f(\frac{a+b}{2}) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a) + f(b)}{2}.$$

This inequality plays an important role in convex analysis and it has a huge literature dealing with its applications, various generalizations and refinements [3, 5, 7, 8, 13, 14, 15, 16, 17].

Received: August 12, 2012 © 2012 Academic Publications, Ltd. url: www.acadpubl.eu

Suppose that $f:[a,b] \to R$ is a four times continuously differentiable function on (a,b) and $||f^{(4)}|| = \sup |f^{(4)}| < \infty$. The following inequality

$$\left| \frac{1}{6} \left\{ f(a) + 4f(\frac{a+b}{2}) + f(b) \right\} - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right|$$

$$\leq \frac{1}{2880} \| f^{(4)} \| (b-a)^{4}$$

is well known in the literature as Simpson's inequality.

For recent result of the Simpson's inequality, see [1, 2, 4, 6, 15, 16, 18].

Let $f, \varphi : K \to R$, where K is a nonempty closed set in \mathbb{R}^n , be continuous functions. We recall the following results, which are due to Noor[9, 10] as follows:

Definition 1. Let $u \in K$. Then the set K is said to be φ -convex at u with respect to φ if

$$u + te^{i\varphi}(v - u) \in K, \quad \forall u, v \in K, \quad t \in [0, 1].$$

Definition 2. (a) The function f on φ -convex set K is said to be φ -convex with respect to φ if

$$f(u + te^{i\varphi}(v - u)) \le (1 - t)f(u) + tf(v), \quad \forall u, v \in K, \quad t \in [0, 1].$$

(b) The function f is said to be φ -concave with respect to φ if -f is φ -convex with respect to φ .

Note that every convex function is a φ -convex function, but the converse is not true.

In [11, 12], Özdemir, Avci and Akdemir established the following theorems:

Theorem 1.1. Let $f: K \to (0, \infty)$ be a differentiable function on K^0 , $a, b \in K$ with $a < a + e^{i\varphi}(b - a)$. If |f| is a φ -convex function on K^0 , then the following inequality holds:

$$\begin{split} & \left| \frac{1}{6} \left\{ f(a) + 4f(\frac{2a + e^{i\varphi}(b - a)}{2}) + f(a + e^{i\varphi}(b - a)) \right\} \right. \\ & \left. - \frac{1}{e^{i\varphi}(b - a)} \int_{a}^{a + e^{i\varphi}(b - a)} f(x) dx \right| \\ & \leq e^{i\varphi}(b - a) \left(\frac{5}{72} \right) \left\{ \left| f(a) \right| + \left| f(b) \right| \right\}. \end{split}$$

Theorem 1.2. Let $f: K \to (0, \infty)$ be a differentiable function on K^0 , $a, b \in K$ with $a < a + e^{i\varphi}(b - a)$. If $|f|^q$ is a φ -convex function on K^0 for some fixed q > 1 with $p = \frac{q}{q-1}$, then the following inequality holds:

$$\begin{split} & \left| \frac{1}{6} \left\{ f(a) + 4f(\frac{2a + e^{i\varphi}(b - a)}{2}) + f(a + e^{i\varphi}(b - a)) \right\} \right. \\ & \left. - \frac{1}{e^{i\varphi}(b - a)} \int_{a}^{a + e^{i\varphi}(b - a)} f(x) dx \right| \\ & \leq e^{i\varphi}(b - a) \left(\frac{1 + 2^{p + 1}}{6^{p + 1}(p + 1)} \right)^{\frac{1}{p}} \\ & \times \left[\left\{ \frac{3}{8} |f(a)|^q + \frac{1}{8} |f(b)|^q \right\}^{\frac{1}{q}} + \left\{ \frac{1}{8} |f(a)|^q + \frac{3}{8} |f(b)|^q \right\}^{\frac{1}{q}} \right]. \end{split}$$

Theorem 1.3. Let $f: K \to (0, \infty)$ be a differentiable function on K^0 , $a, b \in K$ with $a < a + e^{i\varphi}(b - a)$. If $|f|^q$ is a φ -convex function on K^0 for some fixed $q \ge 1$ then the following inequality holds:

$$\left| \frac{1}{6} \left\{ f(a) + 4f(\frac{2a + e^{i\varphi}(b - a)}{2}) + f(a + e^{i\varphi}(b - a)) \right\} - \frac{1}{e^{i\varphi}(b - a)} \int_{a}^{a + e^{i\varphi}(b - a)} f(x) dx \right| \\
\leq e^{i\varphi}(b - a) \left(\frac{5}{72} \right)^{1 - \frac{1}{q}} \left[\left\{ \frac{61 |f(a)|^q + 29 |f(b)|^q}{1296} \right\}^{\frac{1}{q}} + \left\{ \frac{29 |f(a)|^q + 61 |f(b)|^q}{1296} \right\}^{\frac{1}{q}} \right].$$

In this article we establish some generalizations of Hermite-Hadamard-like and Simpson-like type inequalities for functions whose derivatives in absolute values are φ -convex, which is a generalization of Theorem 1.1.

2. Main Results

Throughout this section, let $K=[a,a+e^{i\varphi}(b-a)]$ and $0\leq\varphi\leq\frac{\pi}{2}$. To generalize Theorem 1.1, we need the following lemma.

Lemma 1. Let $K \subset R$ be a φ -convex subset and $f: K \to (0, \infty)$ be a differentiable function on the interior K^0 of K, and $a,b \in K$ with $a < a + e^{i\varphi}(b-a)$. If f is an integrable function on $[a,a+e^{i\varphi}(b-a)]$, then for $r \geq 2$ and $h \in (0,1)$ with $\frac{1}{r} \leq h \leq \frac{r-1}{r}$ the following identity holds:

$$|S(f,\varphi,r,h)|$$

$$=^{put} \left| \frac{1}{r} \left\{ f(a) + (r-2)f(a + he^{i\varphi}(b-a)) + f(a + e^{i\varphi}(b-a)) \right\} \right.$$

$$\left. - \frac{1}{e^{i\varphi}(b-a)} \int_{a}^{a+e^{i\varphi}(b-a)} f(x)dx \right|$$

$$= e^{i\varphi}(b-a) \int_{0}^{1} p(h,r,t)f(a + te^{i\varphi}(b-a))dt, \tag{1}$$

where

$$p(h, r, t) = \begin{cases} t - \frac{1}{r} & t \in [0, h] \\ t - \frac{r-1}{r} & t \in (h, 1] \end{cases}$$

for each $t \in [0, 1]$.

Proof. Since K is a φ -convex subset, for $a, b \in K$ and $t \in [0, 1]$ we have $a + e^{i\varphi}(b - a) \in K$. Integrating by parts implies that

$$\begin{split} & \int_0^h (t - \frac{1}{r}) f\left(a + t e^{i\varphi}(b - a)\right) dt + \int_h^1 (t - \frac{r - 1}{r}) f\left(a + t e^{i\varphi}(b - a)\right) dt \\ &= \left[(t - \frac{1}{r}) \frac{f\left(a + t e^{i\varphi}(b - a)\right)}{e^{i\varphi}(b - a)} \right]_0^h - \int_0^h \frac{f\left(a + t e^{i\varphi}(b - a)\right)}{e^{i\varphi}(b - a)} dt \\ &+ \left[(t - \frac{r - 1}{r}) \frac{f\left(a + t e^{i\varphi}(b - a)\right)}{e^{i\varphi}(b - a)} \right]_h^1 - \int_h^1 \frac{f\left(a + t e^{i\varphi}(b - a)\right)}{e^{i\varphi}(b - a)} dt \\ &= \frac{1}{r e^{i\varphi}(b - a)} \left[f(a) + (r - 2) f(a + h e^{i\varphi}(b - a)) + f(a + e^{i\varphi}(b - a)) \right] \\ &- \frac{1}{[e^{i\varphi}(b - a)]^2} \int_a^{a + e^{i\varphi}(b - a)} f(x) dx, \end{split}$$

If we change the variable $x = a + te^{i\varphi}(b-a)$ and multiply the resulting equality with $e^{i\varphi}(b-a)$ we get the desired result.

Theorem 2.1. Let $K \subset R$ be a φ -convex subset and $f: K \to (0, \infty)$ be a differentiable function on the interior K^0 of K, and $a,b \in K$ with $a < a + e^{i\varphi}(b-a)$. If f is an integrable function on $[a,a+e^{i\varphi}(b-a)]$ and |f| is a φ -convex function on K^0 , then for $r \geq 2$ and $h \in (0,1)$ with $\frac{1}{r} \leq h \leq \frac{r-1}{r}$ the following inequality holds:

$$|S(f,\varphi,r,h)| \le e^{i\varphi}(b-a) \Big\{ \mu_{11} | f(a) | +\mu_{12} | f(b) | \Big\},$$
 (2)

where

$$\mu_{11} = \frac{6 - 3r + (2 - 6h + 9h^2 - 4h^3)r^2}{6r^2},$$

$$\mu_{12} = \frac{6 - 3r + (1 - 3h^2 + 4h^3)r^2}{6r^2}.$$

Proof. From Lemma 2 and using the φ -convexith of |f|, we have

$$\begin{split} & \left| S(f,\varphi,r,h) \right| \\ & \leq e^{i\varphi}(b-a) \Big\{ \int_0^h |t-\frac{1}{r}| |f\left(a+te^{i\varphi}(b-a)\right)| \, dt \\ & + \int_h^1 |t-\frac{r-1}{r}| |f\left(a+te^{i\varphi}(b-a)\right)| \, dt \Big\} \\ & \leq e^{i\varphi}(b-a) \Big[\int_0^{\frac{1}{r}} \left(\frac{1}{r}-t\right) \big\{ (1-t)| |f\left(a\right)| + t |f\left(b\right)| \big\} dt \\ & + \int_{\frac{1}{r}}^h \left(t-\frac{1}{r}\right) \big\{ (1-t)| |f\left(a\right)| + t |f\left(b\right)| \big\} dt \\ & + \int_h^1 \left(\frac{r-1}{r}-t\right) \big\{ (1-t)| |f\left(a\right)| + t |f\left(b\right)| \big\} dt \\ & + \int_{\frac{r-1}{r}}^1 \left(t-\frac{r-1}{r}\right) \big\{ (1-t)| |f\left(a\right)| + t |f\left(b\right)| \big\} dt \Big], \end{split}$$

which completes the proof by the simple calculations.

Corollary 1. In Theorem 2.1

(a) If we give $h = \frac{1}{2}$ and r = 6 then we get

$$\left|S(f,\varphi,6,\frac{1}{2})\right| \le e^{i\varphi}(b-a)\frac{5}{72}\left(\mid f\left(a\right)\mid +\mid f\left(b\right)\mid\right),$$

which implies that Theorem 2.1 is a generalization of Theorem 1.1.

(b) If we give $h = \frac{1}{2}$ and r = 2 then we get

$$|S(f,\varphi,6,\frac{1}{2})| \le e^{i\varphi}(b-a)\frac{1}{8}(|f(a)|+|f(b)|).$$

Theorem 2.2. Let $K \subset R$ be a φ -convex subset and $f: K \to (0, \infty)$ be a differentiable function on the interior K^0 of K, and $a,b \in K$ with $a < a + e^{i\varphi}(b-a)$. If f is an integrable function on $[a,a+e^{i\varphi}(b-a)]$ and $|f|^q$ is a φ -convex function on K^0 for some fixed q>1 with $\frac{1}{p}+\frac{1}{q}=1$, then for $r\geq 2$ and $h\in (0,1)$ with $\frac{1}{r}\leq h\leq \frac{r-1}{r}$ the following inequality holds:

$$|S(f,\varphi,r,h)|$$

$$\leq e^{i\varphi}(b-a) \left[\left\{ \frac{1+(rh-1)^{p+1}}{r^{p+1}(p+1)} \right\}^{\frac{1}{p}} \right. \\ \times \left\{ \left(\frac{2h-h^2}{2} \right) \mid f\left(a\right) \mid^q + \left(\frac{h^2}{2} \right) \mid f\left(b\right) \mid^q \right\}^{\frac{1}{q}} \\ + \left\{ \frac{1+(r-rh+1)^{p+1}}{r^{p+1}(p+1)} \right\}^{\frac{1}{p}} \\ \times \left\{ \left(\frac{(1-h)^2}{2} \right) \mid f\left(a\right) \mid^q + \left(\frac{1-h^2}{2} \right) \mid f\left(b\right) \mid^q \right\}^{\frac{1}{q}} \right].$$

Proof. From Lemma 2 and using the φ -convexith of |f|, we have

$$\begin{aligned}
&|S(f,\varphi,r,h)| \\
&\leq e^{i\varphi}(b-a) \Big\{ \int_{0}^{h} |t-\frac{1}{r}| |f(a+te^{i\varphi}(b-a))| dt \\
&+ \int_{h}^{1} |t-\frac{r-1}{r}| |f(a+te^{i\varphi}(b-a))| dt \Big\} \\
&\leq e^{i\varphi}(b-a) \Big[\Big(\int_{0}^{h} |t-\frac{1}{r}|^{p} dt \Big)^{\frac{1}{p}} \Big(\int_{0}^{h} |f(a+te^{i\varphi}(b-a))|^{q} dt \Big)^{\frac{1}{q}} \\
&+ \Big(\int_{0}^{h} |t-\frac{r-1}{r}|^{p} dt \Big)^{\frac{1}{p}} \Big(\int_{0}^{h} |f(a+te^{i\varphi}(b-a))|^{q} dt \Big)^{\frac{1}{q}} \Big].
\end{aligned} (3)$$

Note that

$$(i) \int_0^h |t - \frac{1}{r}|^p dt = \frac{1 + (rh - 1)^{p+1}}{r^{p+1}(p+1)},$$

$$(ii) \int_0^h |t - \frac{r-1}{r}|^p dt = \frac{1 + (r-rh+1)^{p+1}}{r^{p+1}(p+1)},$$

$$(iii) \int_0^h |f(a + te^{i\varphi}(b-a))|^q dt$$

$$\leq \left(\frac{2h - h^2}{2}\right) |f(a)|^q + \left(\frac{h^2}{2}\right) |f(b)|^q,$$

$$(iv) \int_{h}^{1} |f(a+te^{i\varphi}(b-a))|^{q} dt$$

$$\leq \left(\frac{(1-h)^{2}}{2}\right) |f(a)|^{q} + \left(\frac{1-h^{2}}{2}\right) |f(b)|^{q}. \tag{4}$$

By (3) and (4) we get the desired result.

Corollary 2. In Theorem 2.2

(a) If we give $h = \frac{1}{2}$ and r = 6 then we get

$$\begin{split} \left| S(f, \varphi, 6, \frac{1}{2}) \right| \\ & \leq e^{i\varphi} (b - a) \left(\frac{2^{p+1} + 1}{6^{p+1} (p+1)} \right)^{\frac{1}{p}} \left[\left\{ \frac{3}{8} \mid f\left(a\right) \mid^{q} + \frac{1}{8} \mid f\left(b\right) \mid^{q} \right\}^{\frac{1}{q}} \right] \\ & + \left\{ \frac{1}{8} \mid f\left(a\right) \mid^{q} + \frac{3}{8} \mid f\left(b\right) \mid^{q} \right\}^{\frac{1}{q}} \right], \end{split}$$

which implies that Theorem 2.2 is a generalization of Theorem 1.2.

(b) If we give $h = \frac{1}{2}$ and r = 2 then we get

$$\begin{split} \left| S(f, \varphi, 2, \frac{1}{2}) \right| \\ & \leq e^{i\varphi} (b - a) \left(\frac{1}{2^{p+1} (p+1)} \right)^{\frac{1}{p}} \left[\left\{ \frac{3}{8} \mid f (a) \mid^{q} + \frac{1}{8} \mid f (b) \mid^{q} \right\}^{\frac{1}{q}} \right] \\ & + \left\{ \frac{1}{8} \mid f (a) \mid^{q} + \frac{3}{8} \mid f (b) \mid^{q} \right\}^{\frac{1}{q}} \right]. \end{split}$$

Theorem 2.3. Under the assumptions of THeorem 2.2, we have the following inequalities holds:

$$\begin{split} \left| S(f, \varphi, r, h) \right| \\ & \leq e^{i\varphi} (b - a) \Big\{ \frac{2 + (rh - 1)^{p+1} + (r - rh + 1)^{p+1}}{r^{p+1} (p + 1)} \Big\}^{\frac{1}{p}} \\ & \times \Big\{ \frac{|f(a)|^q + |f(b)|^q}{2} \Big\}^{\frac{1}{q}}. \end{split}$$

Proof. From Lemma 2 and using the φ -convexity of |f|, we have

$$\left| S(f,\varphi,r,h) \right| \leq e^{i\varphi} (b-a) \left(\int_{0}^{1} |p(h,r,t)|^{p} dt \right)^{\frac{1}{p}} \\
\times \left(\int_{0}^{1} |f(a+te^{i\varphi}(b-a))|^{q} dt \right)^{\frac{1}{q}} \\
\leq e^{i\varphi} (b-a) \left(\int_{0}^{h} |t-\frac{1}{r}|^{p} dt + \int_{h}^{1} |t-\frac{r-1}{r}|^{p} dt \right)^{\frac{1}{p}} \\
\times \left(\int_{0}^{1} (1-t) dt |f(a)|^{q} + \int_{0}^{1} t dt |f(b)|^{q} \right)^{\frac{1}{q}}. \tag{5}$$

By (4)(i) and (ii), we get the desired result.

Corollary 3. In Theorem 2.3

(a) If we give $h = \frac{1}{2}$ and r = 6, then we get

$$\begin{split} & \left| S(f, \varphi, 6, \frac{1}{2}) \right| \\ & \leq e^{i\varphi} (b - a) \left\{ \frac{2^{p+2} + 2}{6^{p+1} (p+1)} \right\}^{\frac{1}{p}} \left\{ \frac{|f(a)|^q + |f(b)|^q}{2} \right\}^{\frac{1}{q}}. \end{split}$$

(b) If we give $h = \frac{1}{2}$ and r = 2, then we get

$$\begin{aligned} & \left| S(f, \varphi, 2, \frac{1}{2}) \right| \\ & \leq e^{i\varphi} (b - a) \left\{ \frac{1}{2^p (p+1)} \right\}^{\frac{1}{p}} \left\{ \frac{|f(a)|^q + |f(b)|^q}{2} \right\}^{\frac{1}{q}}.
\end{aligned}$$

Theorem 2.4. Let $K \subset R$ be a φ -convex subset and $f: K \to (0, \infty)$ be a differentiable function on the interior K^0 of K, and $a,b \in K$ with $a < a + e^{i\varphi}(b-a)$. If f is an integrable function on $[a,a+e^{i\varphi}(b-a)]$ and $|f|^q$ is a φ -convex function on K^0 for some fixed $q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then for $r \ge 2$ and $h \in (0,1)$ with $\frac{1}{r} \le h \le \frac{r-1}{r}$ the following inequality holds:

$$\begin{split} & \left| S(f,\varphi,r,h) \right| \\ & \leq e^{i\varphi} (b-a) \left[\left(\frac{1+(rh-1)^{p+1}}{r^{p+1}(p+1)} \right)^{\frac{1}{p}} \left(\mu_{21} \mid f\left(a\right) \mid^{q} + \mu_{22} \mid f\left(b\right) \mid^{q} \right)^{\frac{1}{q}} \right. \\ & + \left. \left(\frac{1+(r-rh+1)^{p+1}}{r^{p+1}(p+1)} \right)^{\frac{1}{p}} \left(\mu_{23} \mid f\left(a\right) \mid^{q} + \mu_{24} \mid f\left(b\right) \mid^{q} \right)^{\frac{1}{q}} \right], \end{split}$$

where

$$\mu_{21} = \frac{(3-2h)h^2r^3 - 3(2-h)hr^2 + 6r - 3}{6r^3},$$

$$\mu_{22} = \frac{2h^3r^3 - 3h^2r^2 + 3}{6r^3},$$

$$\mu_{23} = \frac{2(1-h)^3r^3 - 3(1-h)^2r^2 + 2}{6r^3},$$

$$\mu_{21} = \frac{(1-h)^2(1+2h)r^3 - 3(1-h^2)r^2 + 6r - 2}{6r^3}.$$

Proof. From Lemma 2 and using the φ -convexity of |f|, we have

$$|S(f,\varphi,r,h)|$$

$$\leq e^{i\varphi}(b-a) \Big\{ \int_{0}^{h} |t - \frac{1}{r}| |f(a + te^{i\varphi}(b-a))| dt \\
+ \int_{h}^{1} |t - \frac{r-1}{r}| |f(a + te^{i\varphi}(b-a))| dt \Big\} \\
\leq e^{i\varphi}(b-a) \Big[\Big(\int_{0}^{h} |t - \frac{1}{r}| dt \Big)^{\frac{1}{p}} \\
\times \Big(\int_{0}^{h} |t - \frac{1}{r}| |f(a + te^{i\varphi}(b-a))|^{q} dt \Big)^{\frac{1}{q}} \\
+ \Big(\int_{h}^{1} |t - \frac{r-1}{r}| dt \Big)^{\frac{1}{p}} \\
\times \Big(\int_{h}^{1} |t - \frac{r-1}{r}| |f(a + te^{i\varphi}(b-a))|^{q} dt \Big)^{\frac{1}{q}} \Big]. \tag{6}$$

Note that

$$(i) \int_{0}^{h} |t - \frac{1}{r}| |f(a + te^{i\varphi}(b - a))|^{q} dt$$

$$\leq \int_{0}^{\frac{1}{r}} (\frac{1}{r} - t) \{ (1 - t) |f(a)|^{q} + t |f(b)|^{q} \} dt$$

$$+ \int_{\frac{1}{r}}^{h} (t - \frac{1}{r}) \{ (1 - t) |f(a)|^{q} + t |f(b)|^{q} \} dt$$

$$= \mu_{21} |f(a)|^{q} + \mu_{22} |f(b)|^{q}, \tag{7}$$

$$(ii) \int_{h}^{1} |t - \frac{r-1}{r}| |f(a + te^{i\varphi}(b-a))|^{q} dt$$

$$\leq \int_{h}^{\frac{r-1}{r}} (\frac{r-1}{r} - t) \{ (1-t) |f(a)|^{q} + t |f(b)|^{q} \} dt$$

$$+ \int_{\frac{r-1}{r}}^{1} (t - \frac{r-1}{r}) \{ (1-t) |f(a)|^{q} + t |f(b)|^{q} \} dt$$

$$= \mu_{23} |f(a)|^{q} + \mu_{24} |f(b)|^{q}.$$

$$(8)$$

By (6),(7) and (8) we get the desired result.

Corollary 4. In Theorem 2.4

(a) If we give $h = \frac{1}{2}$ and r = 6 then we get

$$\left| S(f,\varphi,6,\frac{1}{2}) \right| \le e^{i\varphi} (b-a) \left\{ \frac{2^{p+1}+1}{6^{p+1}(p+1)} \right\}^{\frac{1}{p}} \left\{ \frac{5}{72} \right\}^{\frac{1}{q}}$$

$$\times \left[\left\{ \frac{61}{90} \mid f(a) \mid^{q} + \frac{29}{90} \mid f(b) \mid^{q} \right\}^{\frac{1}{q}} \right. \\ + \left\{ \frac{29}{90} \mid f(a) \mid^{q} + \frac{61}{90} \mid f(b) \mid^{q} \right\}^{\frac{1}{q}} \right],$$

which implies that Theorem 2.4 is a generalization of Theorem 1.3. (b) If we give $h = \frac{1}{2}$ and r = 2 then we get

$$|S(f,\varphi,2,\frac{1}{2})| \le e^{i\varphi}(b-a) \left\{ \frac{1}{2^{p+1}(p+1)} \right\}^{\frac{1}{p}}$$

$$\times \left[\left\{ \frac{5}{48} \mid f(a) \mid^{q} + \frac{1}{48} \mid f(b) \mid^{q} \right\}^{\frac{1}{q}} \right]$$

$$+ \left\{ \frac{1}{48} \mid f(a) \mid^{q} + \frac{5}{48} \mid f(b) \mid^{q} \right\}^{\frac{1}{q}} \right].$$

References

- [1] M. Alomari, M. Darus, On some inequalities of Simpson-type via quasiconvex functions and applications, *Transylvanian J. of Mathematics and Mechanics*, **2**, No. 1 (2010), 15-24.
- [2] M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12, No. 4 (2009).
- [3] M. Avci, H. Kavurmaci, M. E. Özdemir, New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171-5176.
- [4] A. Barani, S. Barani, S. S. Dragomir, Simpson's type inequalities for functions whose third derivatives in the absolute values are *P*-convex, *RGMIA Res. Rep. Coll.*, **14** (2011), preprint.
- [5] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapzoidal formula, *Appl. Math. Lett.*, **11**, No. 5 (1998), 91-95.
- [6] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, *J. of Inequal. and Appl.*, **5**, No. 6 (2000), 533-579.
- [7] H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions, *JIA*, **2011** (2011), 2011: 86.

- [8] U. S. Kirmaci, M. E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 153 (2004), 361-368.
- [9] K. Inayat Noor, M. Aslam Noor, Relaxed strongly nonconvex functions, *Appl. Math. E-Note*,**6** (2006), 259-267.
- [10] M. Aslam Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl., 11 (2006), 165-171.
- [11] M. E. Özdemir, M. Avci, A. O. Akdemir, Simpson type inequaities via φ -convexity, *J. of Optim. Theory and Appl.*, presented.
- [12] M. E. Özdemir, M. Avci, A. O. Akdemir, Inequaities via φ -convexity, Classical Analysis and ODEs (2012), ArXiv:1205.6657v1[math.FA].
- [13] M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via (α, m) -convexity, *Comput. Math. Appl.*, **61** (2011), 2614-2620.
- [14] M. E. Özdemir, M. Avci, Erhan Set, On some inequalities of Hermite-Hadamard type via *m*-convexity, *Appl. Math. Lett.*, **23** (2010), 1065-1070.
- [15] J. Park, New generalizations of Simpson-type inequalities for differentiable s-convex mappings, Far East J. of Math. Sci., **51**, No. 1 (2011), 41-58.
- [16] J. Park, Hermite and Simpson-like type inequalities for functions whose second derivatives in absolute values at certain powers are s-convex, *Inter. J. of Pure and Applied Math.*, (2012), To appear.
- [17] M. Z. Sarikaya, M. Avci, H. Kavurmaci, On some inequalities of Hermite-Hadamard type for convex functions, ICMS Inter. Conf. on Math. Sci., AIP Conf. Proc., 1309 Art No: 852.
- [18] M. Z. Sarikaya, Erhan Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191-2199.
- [19] E. A. Youness, E-convex sets, E-convex functions and E-convex programming, J. of Optim. Theory and Appl., 102, No. 2 (1999), 439-450.