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1. Introduction

The following double inequality is known in the literature as Hermite-Hadamard
integral inequality for convex functions: For a convex function f: I C R — R
defined on the interval I of real numbers and a,b € I with a < b, the following
double inequality holds:

a+b

J(@)+ £(0)

I :

This inequality plays an important role in convex analysis and it has a huge lit-
erature dealing with its applications, various generalizations and refinements [3,
5,7, 8,13, 14, 15, 16, 17].
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Suppose that f : [a,b] — R is a four times continuously differentiable
function on (a,b) and || f® ||=sup | f® |< co. The following inequality

Sr@ 1 110} - [ el
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< oo 1 o (6 0)
is well known in the literature as Simpson’s inequality.
For recent result of the Simpson’s inequality, see [1, 2, 4, 6, 15, 16, 18].
Let f,o: K — R, where K is a nonempty closed set in R, be continuous
functions. We recall the following results, which are due to Noor[9, 10] as
follows:

Definition 1. Let u € K. Then the set K is said to be yp-convex at u
with respect to ¢ if

u+te?(v—u) € K, Yuve K, tel0,1].

Definition 2. (a) The function f on yp-convex set K is said to be ¢-convex
with respect to ¢ if

flutte(v—u)) < (1 —t)f(u) +tf(v), Yu,v € K, tel0,1].

(b) The function f is said to be @p-concave with respect to ¢ if —f is -
convex with respect to ¢.

Note that every convex function is a p-convex function, but the converse is
not true.
In [11, 12], Ozdemir, Avci and Akdemir established the following theorems:

Theorem 1.1. Let f : K — (0,00) be a differentiable function on K,
a,b € K witha < a+e¥(b—a). If| f | is a p-convex function on K°, then
the following inequality holds:

204 0Z0)) 4 fat oo - )
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Theorem 1.2. Let f: K — (0,00) be a differentiable function on K,
a,b € K witha < a+¢e%(b—a). If| f |7 is a p-convex function on K° for
some fixed ¢ > 1 with p = q—Lp then the following inequality holds:

20400 4 fat (o))

1 | /aa+ew(b—a) f(:):)d:r‘

Cev(b—a
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Theorem 1.3. Let f : K — (0,00) be a differentiable function on K,

a,b € K witha < a+¢e%(b—a). If| f |7 is a p-convex function on K° for
some fixed q > 1 then the following inequality holds:

1
5@ +45(

8=

‘é{f(a)+4f(W)+f(a+ew(b—a))}
1 a+e'? (b—a)
ol e
4 1 61 f (a)|+29]f ()| 2
< eup(b_a)(%)l P |:{ ‘f( )‘12";)6 |f( )| }q

29| f (a)|" + 61| f (b)|" 1
+{ 1296 } ]
In this article we establish some generalizations of Hermite-Hadamard-like
and Simpson-like type inequalities for functions whose derivatives in absolute
values are p-convex, which is a generalization of Theorem 1.1.

2. Main Results

Throughout this section, let K = [a,a 4+ €?(b—a)] and 0 < p < .

To generalize Theorem 1.1, we need the following lemma.

Lemma 1. Let K C R be a y-convex subset and f : K — (0,00)
be a differentiable function on the interior K° of K, and a,b € K with a <
a+e%(b—a). If f is an integrable function on [a,a+ €' (b—a)], then for r > 2
and h € (0,1) with 1 < h < =1 the following identity holds:

|S(f,¢,m,h)
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:put

%{f(a) + (r —2)f(a+ he" (b —a)) + f(a + e (b— a))}

1 a+e'? (b—a)
pEE /a f(x)dx‘

= ew(b—a)/o p(h,r,t)f (a+te'?(b—a))dt, (1)

where

for each t € [0, 1].

Proof. Since K is a p-convex subset, for a,b € K and ¢ € [0,1] we have
a+ e (b—a) € K. Integrating by parts implies that

h 1 . 1 .
/0 t—=)f (a+te“"(b—a))dt+/ (t— )f (a+te'?(b—a))dt

,
L flattee [ £lat et o)
N [(t 'r) e (b —a) ew (b— a) dt
r—1 f(a—i—te“" f a—l—te“" a))
+ [(t r ) ew(b—a e ( b—a) di
1

i — /(@) +(r=2)f(a+ he“"(b —a)) + fla+e®(b—a))

1 a+e'?(b—a)
G / fa)de,

If we change the variable z = a +te*¥(b— a) and multiply the resulting equality
with (b — a) we get the desired result.

Theorem 2.1. Let K C R be a g-convex subset and f : K — (0,00)
be a differentiable function on the interior K° of K, and a,b € K with a <
a+ e (b—a). If f is an integrable function on [a, a + €*¥ (b — a)] and | f | isa
¢-convex function on K°, then for r > 2 and h € (0,1) with £ < h < = the
following inequality holds:

[S(F, 07 )| < @b~ a)mr | £ (@) | +ma | £ (B) |}, 2)
where

6 — 3r + (2 — 6h + 9h? — 4h®)r?
612 '

H11 =
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6 — 3r + (1 — 3h2 + 4h3)r?
6r2

Hi2 =
Proof. From Lemma 2 and using the op-convexith of | f |, we have
|S(f, .7 1)
h

saWMwﬂ/‘u——ufm+ww @) | di

(a+te®(b—a)) | dt}

3=

S =

h
gew(b—a)[/o (
h
[ -0 F @]+ £ 0) | bt

—t) {1 =t)| f(a) [+t ] f(b)] }at

+AT (2= {=0) | @) | 411 £ 0) | Jat
1 r—
+/H(t— Tl){(l—t)lf()lﬂlf ) | Jat],

which completes the proof by the simple calculations.

Corollary 1. In Theorem 2.1
(a) If we give h = 1 and r = 6 then we get

1

\I|Cﬂ

|S(f, .6,

Pl el (1 f@+]1f®1]),
which implies that Theorem 2.1 is a generalization of Theorem 1.1.
(b)If we give h = % and r = 2 then we get

1

| (fv()ov ) )|<eup(b_a)

(I @+ f®1).

Theorem 2.2. Let K C R be a ¢-convex subset and f : K — (0,00)
be a differentiable function on the interior K° of K, and a,b € K with a <
a+e¥(b—a). If f is an integrable function on [a,a + ¢*¥(b—a)] and | f |7 is
a p-convex function on K° for some fixed q¢ > 1 with 1% + % =1, then for r > 2
and h € (0,1) with % <h< % the following inequality holds:

|S(f. .m 1)

| =
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<e¥(b—a) H 1 ;Yﬁp_j)lp)ﬂ }%
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(1 —h)? g 1R o 7
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Proof. From Lemma 2 and using the p-convexith of | f |, we have

S|

ga%b—@{Aﬂt—%ufm+www—@Hdt

b [T e - ) )
Seww—aﬁpéﬂt—%wdt;‘/\f’a+ww®—awwd0
+(Ahu—r;1WdQ A Flartb-a)ra)]. @

Note that

h +1
1 1 h—1)P
(D/It——Wﬁz tirh=1)
0 T

retl(p+1)
ii/hu—r_lﬁdw_1+$;6i:3m{
m/ | F(a+te(b—a)) |7 dt
2h B h?

< ( ) If @ [T +(5) @)1,

zv/ | f(a+te®(b—a)) |7 dt

< (M | @ +(

By (3) and (4) we get the desired result.

1—h?

)1 f @) (4)
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Corollary 2. In Theorem 2.2
(a) If we give h = 1 and r = 6 then we get

|S(f, .6, %)!
) p+1 1 1
< (b—a)(groy) (5 1/ @1 +5 £ @)1}
gl @+ 15 @ 1),

which implies that Theorem 2.2 is a generalization of Theorem 1.2.
(b)If we give h = % and r = 2 then we get

S(7.0.2.3)]

<00 () ({5 17 @145 170 1)

FEIF @IS 701 ]

Theorem 2.3. Under the assumptions of THeorem 2.2, we have the
following inequalities holds:

|S(f,¢,7, 1))
i 2+ (rh — 1P 4 (r —rh 4 1)PT1y 5
< b - a)f S )
X{\f(a) |94 | £ (b) \q};.
2

Proof. From Lemma 2 and using the p-convexity of | f |, we have

1

|ﬂﬂwwwMSeww—w(AlmwnwnpﬁV
X (/01|f(a+tei‘p(b—a)) |th)3

1

h 1
: 1 1 1
Se“"(b—a)(/o \t—;]pdﬂ-/h It~ \pdt)p

r

1 1 1
<([a-varr@ps [aror) )

By (4)(i) and (ii), we get the desired result.
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Corollary 3. In Theorem 2.3
(a) If we give h = 1 and r = 6, then we get

S(7.:6,3)]
< ew(b_a>{6§jj;121)}%{| [+ 1O
(b)If we give h = § and r = 2, then we get
1S(f, 2, %)\
< ew(b_a){Qp(le)}é{! f (a) |7 ; | f(b) \q}é.

Theorem 2.4. Let K C R be a @-convex subset and f : K — (0,00)
be a differentiable function on the interior K° of K, and a,b € K with a <
a+e¥(b—a). If f is an integrable function on [a,a + ¢ (b —a)] and | f |7 is
a @-convex function on K° for some fixed ¢ > 1 with % + % =1, then for r > 2
and h € (0,1) with £ < h < =L the following inequality holds:

|S(f,¢,mh)|
. rh — p+1, 1 1
<) [(Fo ) (e [ @1 | £ @) 17)"

r—r p+1
(1 . Eap+1(ph: 11)) )

Q=

(s | £ (@) 9+ | £ 8 19)°].

where

(3 — 2h)h%*r3 — 3(2 — h)hr? 4+ 6r — 3

21 = 63 )
2h37r3 — 3h%r? + 3

Hao2 = 63 )
2(1 — h)%r3 —3(1 — h)?r? +2

23 = 63 )

(1 —h)2(1 + 2R)r3 — 3(1 — h%)r? +6r — 2
H21 = 673 .

Proof. From Lemma 2 and using the yp-convexity of | f |, we have

|S(f..m 1)
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<ew<b—a /h\t—lHf<a+tew<b—a>>rdt
“(b—a)) | dt}
h 1
gew(b—a)[(/ |t—1|dt)”
h
X(Olt——Hfathe“"( ))!th)
1 r—
+(/h! 1!dt
( ]
Note that
/!t——Hf(athe“"( a)) |7 dt
<[ G-t{a=-n1f @1+ @) ya
h
[ - Ha-01F @1+ £ O) 1 bt
= pio1 | f () |9 +paa | £ (B) |9, (7)

b —a)) |*dt

u/|
g/ (7";1 D{—0) | f (@) |7+ F ®) | Yat
h

+ﬁ_1( 1){(1—t)\f()\q+t!f b) |9 Yt

= poz | (@) [ +paa | f(B) 7. (8)
By (6),(7) and (8) we get the desired result.

Corollary 4. In Theorem 2.4
(a) If we give h = 1 and r = 6 then we get

iz -t )

6rtl(p+1
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S @2 )

{1 f @ g | F o1},

which implies that Theorem 2.4 is a generalization of Theorem 1.3.

1]

(b)If we give h = % and r = 2 then we get

) , 1 v
[S(f.6:2. )1 < 0= ){ gy )

=

{gli@etgl o}
i f @+ o e )]
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