ON CONNECTIONS BETWEEN DOMINATING SETS AND TRANSVERSALS IN SIMPLE HYPERGRAPHS

R. Dharmarajan1,§, D. Ramachandran2

1Department of Mathematics
SASTRA University
Thanjavur, Tamilnadu State, INDIA
2Abel-Jacobi Research Foundation
Palghat, Kerala State, INDIA

Abstract: This article focuses on characterizing the hypergraphs in which dominating sets are transversals.

AMS Subject Classification: 05C65
Key Words: simple hypergraph, Sperner, transversal, dominating set, trim hypergraph

1. Introduction

The cardinality (or, size) of a finite nonempty set V is denoted by $|V|$. The set of all subsets (including the empty set ϕ) of V is denoted by 2^V which is called the \textit{power set} \cite{7} of V. The set of all nonempty subsets of V is denoted by 2^V*; that is, $2^V* = 2^V - \{\phi\}$.

Let E be a family of nonempty subsets of V. If $\bigcup_{X \in E} X = V$, we say E \textit{fills out} V. A \textit{hypergraph} \cite{2} on V is a pair (or, couple) $H = (V, E)$ where V is a nonempty finite set and E is a family of nonempty subsets of V that fills out V. The set V is called the \textit{vertex set} of H and each member of E is called a \textit{hyperedge} of H. If the members of E are all distinct (that is, no two members are equal as subsets of V; or, $E \subseteq 2^V*$) then H is called \textit{simple}. If no member of E is a subset (proper or otherwise) of another, then H is called a Sperner

\\[
\text{Received: August 22, 2012} \quad \text{© 2012 Academic Publications, Ltd.} \\
\text{url: www.acadpubl.eu}
\]

§Correspondence author
hypergraph. Some authors (instances: [2] and [3]) take Sperner hypergraphs to be simple and vice versa but there is distinction [6] between the two: Sperner hypergraphs are necessarily simple but not conversely. See 1.1 that follows.

Example 1.1. Let \(H = (V, E) \) where \(V = \{1, 2, 3, 4, 5\} \), \(E = \{X_1, X_2, X_3\} \) with \(X_1 = \{2, 3\} \), \(X_2 = \{2\} \) and \(X_3 = \{1, 3, 4, 5\} \). \(H \) is simple because the three hyperedges are all distinct as subsets of \(V \). But \(H \) is not Sperner because \(X_2 \subset X_1 \).

All the hypergraphs in the coming discussion are assumed simple unless there is some unambiguous indication to the contrary. The motivation for this research work comes principally from [4] that discusses transversal number and dominating number in simple hypergraphs in substantial detail.

2. Transversals and Dominating Sets

Let \(H = (V, E) \) be a simple hypergraph and \(T \in 2^V \). Then \(T \) is called a transversal [2] in \(H \) iff \(T \cap A \neq \emptyset \) for each \(A \in E \) - which criterion is also rephrased as: \(T \) intersects every hyperedge of \(H \). If \(T \) is a transversal and \(T \neq V \) then \(T \) is called a proper transversal in \(H \).

Two vertices \(x \) and \(y \) in \(V \) are said to be adjacent if there is a hyperedge that contains \(x \) and \(y \); that is: \(x, y \in A \) for some \(A \in E \). Evidently every vertex is adjacent to itself. Let \(D \in 2^V \). Then \(D \) is called a dominating set [1] in \(H \) iff: (i) \(D \neq V \), and (ii) each \(x \in V - D \) is adjacent to some \(y \in D \).

Proposition 2.1. If \(T \) is a proper transversal in \(H = (V, E) \), then \(T \) is a dominating set in \(H \).

Proof. Let \(x \in V - T \). Let \(A \in E \) be such that \(x \in A \). Then \(T \cap A \neq \emptyset \) since \(T \) is a transversal. Let \(y \in T \cap A \). At once we have \(x \neq y \) and \(x \) is adjacent to \(y \), whence \(T \) is a dominating set.

Example 2.2. Not every dominating set in \(H \) is a transversal, though. Consider \(H = (V, E) \) where \(V = \{1, 2, 3, 4, 5\} \), \(E = \{X_1, X_2, X_3, X_4\} \) with \(X_1 = \{1, 2\} \), \(X_2 = \{2, 3, 4\} \), \(X_3 = \{4, 5\} \) and \(X_4 = \{3, 5\} \). Let \(D = \{1, 5\} \). Each element of \(V - D = \{2, 3, 4\} \) is adjacent to either 1 or 5, and so \(D \) is a dominating set in \(H \). But \(D \) is not a transversal because \(D \cap X_2 = \emptyset \).

Every hypergraph has a transversal - the vertex set is always one. But there are hypergraphs without dominating sets. When can a hypergraph have a dominating set?
Proposition 2.3. $H = (V, E)$ has a dominating set if and only if $|X| \geq 2$ for some $X \in E$.

Proof. Assume H has a dominating set, say D. Let $x \in V - D$ be given. Were $|X| = 1$ for every $X \in E$ then $\{x\}$ is the only hyperedge containing x, and so x is not adjacent to any member of D, contradicting the dominating nature of D.

Conversely, suppose $|X| \geq 2$ for some $X \in E$. Let $a, b \in X$ and $a \neq b$. Let $D = V - \{a\}$. Then (i) $D \neq V$, (ii) $b \in D$, (iii) $V - D = \{a\}$ and (iv) a is adjacent to b, whence D is a dominating set in H.

We are looking to characterize the hypergraphs with the property that every dominating set is a transversal. Section 3 deals with this, culminating in Proposition 3.4.

3. Dominating Sets in Trim Hypergraphs

This section is devoted to trim hypergraphs. Let $H = (V, E)$. A hyperedge X in H is called redundant in H (or, redundant in E) if there exists $S \subseteq E - \{X\}$ such that S covers X; that is, $X \subseteq \bigcup_{Y \in S} Y$. If $H = (V, E)$ has no redundant hyperedges then we call E a minimal hyperedge cover for H and we call H a trim hypergraph [5]. For a vertex $x \in V$, the number of hyperedges that contain x is defined to be the degree of x in H, and this number is denoted by $dx(H)$ or dx.

Proposition 3.1. A hyperedge X is redundant in H if and only if no vertex of X is of degree 1. In other words, $H = (V, E)$ is trim if and only if each hyperedge has a vertex of degree 1.

The proof of 3.1 is discussed in [5].

Proposition 3.2. If H is trim then every dominating set in H is a transversal.

Proof. Let D be a given dominating set in the trim hypergraph H, and let X be a given hyperedge in H. Then $dz = 1$ for some $z \in X$. If $z \in D$ then the conclusion follows at once. If $z \notin D$, then z is adjacent to some $y \in D$. Then $y \in X$, in view of $dz = 1$, whence $y \in D \cap X$.

Proposition 3.3. If \(H \) is a Sperner hypergraph and if every dominating set in \(H \) is a transversal, then \(H \) is trim.

Proof. Suppose \(H \) is not trim, and so let \(Y \) be a redundant hyperedge in \(H \). Clearly \(V - Y \) is nonempty. Let \(D = V - Y \). Given \(y \in Y \), there is a hyperedge \(X (\neq Y) \) such that \(y \in X \). Since \(H \) is Sperner, there is \(z \in X \) with \(z \neq y \) and \(z \in V - Y \). Then \(y \) is adjacent to \(z \), and so \(D \) is a dominating set in \(H \). But then \(D \) fails to be a transversal because \(D \cap Y = \emptyset \).

Proposition 3.4. Let \(H \) be Sperner. Then every dominating set in \(H \) is a transversal if and only if \(H \) is trim. (3.4 is a consequence of 3.2 and 3.3.)

4. Summing Up

(i) In a simple hypergraph (not necessarily Sperner), each proper transversal is a dominating set (2.1), though not conversely (2.2), and

(ii) in a Sperner hypergraph, each dominating set is a transversal if and only if the hypergraph is trim (3.4).

Thus, it is precisely in the class of trim hypergraphs that every dominating set is a transversal. This is of theoretical interest at this point, and possibilities of applications are being studied.

Acknowledgments

The corresponding author expresses his thanks to Professor R. Sethuraman, Vice Chancellor, SASTRA University, for the latter’s unstinted encouragement and support.

References

