A CLASS OF EIGENVALUE PROBLEMS
FOR THE (p, q)-LAPLACIAN IN \mathbb{R}^N

Nawel Benouhiba1, Zahia Belyacine2

$^1,^2$Department of Mathematics
LAM, Badji Mokhtar-Annaba University
P.O. Box 12, El Hadjar, 23000, Annaba, ALGERIA

Abstract: This paper concerns the study of a nonlinear eigenvalue problem for the (p, q)–Laplacian with a positive weight

$$-\Delta_p u - \Delta_q u = \lambda g(x)|u|^{p-2}u \text{ in } \mathbb{R}^N.$$

Using the Mountain-Pass Theorem, we show the existence of a continuous set of positive eigenvalues.

AMS Subject Classification: 35B33, 35B45, 35J60, 35J70

Key Words: (p, q)-Laplacian, eigenvalue, Weak solution, Palais-Smale condition

1. Introduction

In recent years much attention was given to the study of stationary solutions of the reaction-diffusion equation

$$u_t = div \left((|\nabla u|^{p-2} + |\nabla u|^{q-2}) \nabla u \right) + c(x, u) \quad (1.1)$$

that appears in physics and related sciences such as biophysics, plasma physics and chemical reaction design.
When \(q = p \) and \(c(x, u) = \lambda g(x)|u|^{p-2}u \), stationary problem associated to
1.1 becomes an eigenvalue \(p \)-Laplacian problem of the form

\[
-\Delta_p u = \lambda g(x)|u|^{p-2}u
\]

which has been widely studied both in bounded domains and \(\mathbb{R}^N \). By means
Ljusternik-Schnirelmann theory, it was established the existence of a non
decreasing positive sequence of eigenvalues \(0 < \lambda_1 < \ldots < \lambda_n < \ldots \) (see [4] and
[8]). A characterization of the first eigenvalue was given by

\[
\lambda_1 = \inf_{u \in W^{1,p} \setminus \{0\}} \frac{\|u\|_{1,p}^p}{\int g|u|^p\,dx}
\]

It was also shown (see [1]) that \(\lambda_1 \) is simple, principal and isolated.

For the case \(q \neq p \), few studies appeared for special cases of
\(c(x, u) \). For example in [6], the author gives an existence result of a non
trivial solution of the problem

\[
-\text{div} \left((|\nabla u|^{p-2} + |\nabla u|^{q-2}) \nabla u \right) = m|u|^{p-2}u + n|u|^{q-2}u + f(x, u)
\]

on \(\mathbb{R}^N \), under suitable conditions on the coefficients and the exponents. In
[9], a result of the existence of an infinitely many weak solutions of a similar
problem with a concave-convex nonlinearity in bounded domain is given. In [5],
the authors established a multiplicity existence result for the \((p, q)\) -Laplacian
problem with critical exponent on a bounded domain.

In this paper, we are interested in finding eigenvalues of the problem

\[
-\text{div} (|\nabla u|^{p-2} + |\nabla u|^{q-2}) \nabla u = \lambda g(x)|u|^{p-2}u \text{ in } \mathbb{R}^N.
\]

under the hypotheses:

\[
1 < q < p < q^*
\]

and

\[
0 \leq g \in L^{(\frac{q^*}{p^*})'}(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)
\]

where \(\alpha = \frac{p(1-t)}{1-\frac{p}{q^*}} \), for some \(t \in (0, 1) \) (so \(0 < \alpha < p \)).

We will look for weak solutions of 1.4 in the framework of the reflexive
Banach space \(W = W^{1,p}(\mathbb{R}^N) \cap W^{1,q}(\mathbb{R}^N) \), defined as the completion of \(C_0^\infty(\mathbb{R}^N) \)
with respect to the norm \(\|u\| = \|u\|_{1,p} + \|u\|_{1,q} \).

As we will see, the energy functional associated to problem 1.4 is given by

\[
I(u) = \frac{1}{p} \|u\|_{1,p}^p + \frac{1}{q} \|u\|_{1,q}^q - \frac{\lambda}{p} \int_{\mathbb{R}^N} g(x)|u|^p\,dx.
\]
A CLASS OF EIGENVALUE PROBLEMS...

\[\langle I'(u), v \rangle = \int_{\mathbb{R}^N} |\nabla u|^{p-2} \nabla u \nabla v dx + \int_{\mathbb{R}^N} |\nabla u|^{q-2} \nabla u \nabla v dx - \lambda \int_{\mathbb{R}^N} g(x)|u|^{p-2} uv dx, \]
for all \(v \in W \).

Notice that critical points of the functional \(I \) are precisely weak solutions of 1.4. To get critical points of \(I \) we will apply the Mountain-Pass Theorem. Establishing the Palais-Smale condition is the most difficulty in studying such problems. First, there is a lack of compactness for the Sobolev embedding. So the boundedness of the Palais-Smale sequence is not evident. Another difficulty, as it was mentioned in [5, 9] becomes from the fact that the Banach space framework does not ensure that

\[|\nabla u_n|^{p-2} \nabla u_n \rightharpoonup |\nabla u|^{p-2} \nabla u \text{ in } L^{p-1}_p(\mathbb{R}^N) \]
for a Palais-Smale sequence \(\{u_n\} \). That is why in both works the authors used the Concentration-Compactness principal.

In our case, the use of the weight \(g \) in an appropriate Lebesgue space overcomes these difficulties.

The principal result of this paper is the following theorem.

Theorem 1. If \(p, q, \) and \(g \) fulfill 1.5 and 1.6, then there exits \(\lambda^* > 0 \) such that any \(\lambda > \lambda^* \) is an eigenvalue of problem 1.4.

In what follows, the letter \(C \) will be indiscriminately used to denote various constants when the exact values are irrelevant. The symbol \(\int \) will denote \(\int_{\mathbb{R}^N} \).

2. Proof of the Results

We say that \(\lambda \in \mathbb{R} \) is an eigenvalue of Problem 1.4 if there exists \(u \in W, u \neq 0 \) such that

\[\int |\nabla u|^{p-2} \nabla u. \nabla v dx + \int |\nabla u|^{q-2} \nabla u. \nabla v dx = \lambda \int g(x)|u|^{p-2} uv dx, \]
\[\forall v \in W. \quad (2.1) \]

This is equivalent to

\[I'(u) = 0 \text{ in } W'. \]

Standard argument shows that \(I \in C^1(W, \mathbb{R}) \). Since the functional \(I \) is not bounded from below, we will look for local minimizers by means of the Mountain-Pass Theorem [7].
We begin this section by establishing some results required in the proof of Theorem 1.

Lemma 2. For all \(u \in W \) we have

\[
\int g|u|^p \, dx \leq C \|g\|_\infty \|g\|_{\frac{p(1-t)}{t}} \|u\|_{1,p} \|u\|_{1,q}^{(1-t)}. \tag{2.2}
\]

Proof. For any \(u \in W \), we have by the Hölder inequality

\[
\int g|u|^p \, dx \leq A_1 A_2.
\]

Where \(A_1 = \left(\int g|u|^\alpha \, dx \right)^{\frac{p(1-t)}{\alpha}} \) and \(A_2 = \left(\int g|u|^{p^*} \, dx \right)^{\frac{pt}{p^*}} \). By Sobolev injection it yields

\[
A_2 \leq C \|g\|_\infty \|u\|_{1,p}^{pt}.
\]

To estimate \(A_1 \) we apply the Hölder inequality to get

\[
A_1^{\frac{\alpha}{p(1-t)}} \leq \left(\int g^{\frac{p^*}{\alpha}} \, dx \right)^{\frac{1}{p^*}} \left(\int |u|^{q^*} \, dx \right)^{\frac{\alpha}{q^*}}.
\]

By Sobolev embedding we can conclude that

\[
A_1 \leq C \|g\|_{\frac{p^*}{\alpha}} \|u\|_{1,q}^{(1-t)}
\]

and Lemma 2 follows.

Lemma 3. The functional \(I \) satisfies the Palais-Smale condition \((PS)_c\) for any \(c \in \mathbb{R} \).

Proof. Let \((u_n) \subset W \) be a Palais-Smale sequence at a level \(c \in \mathbb{R} \). This means that

\[
I(u_n) \to c \text{ and } I'(u_n) \to 0 \text{ in } W'.
\]

We will show that \(u_n \) is a bounded sequence. Since \(I(u_n) \) is a real convergent sequence then there exists \(M > 0 \) such that

\[
I(u_n) = \frac{1}{p} \|u_n\|_{1,p}^p + \frac{1}{q} \|u_n\|_{1,q}^q - \frac{\lambda}{p} \int g|u_n|^p \, dx < M
\]

\[
\frac{1}{p} \left(\|u_n\|_{1,p}^p + \|u_n\|_{1,q}^q \right) \leq \frac{1}{p} \|u_n\|_{1,p}^p + \frac{1}{q} \|u_n\|_{1,q}^q \leq M + \frac{\lambda}{p} \int g|u_n|^p \, dx.
\]
We entail that
\[
\langle I'(u_n), u_n \rangle = \|u_n\|^p_{1,p} + \|u_n\|^q_{1,q} - \lambda \int g|u_n|^p dx \leq pM.
\]
This means that \(\langle I'(u_n), u_n \rangle\) is bounded. We conclude that \(\frac{1}{q} - \frac{1}{p}\|u_n\|^q_{1,q} = I(u_n) - \frac{1}{p}\langle I'(u_n), u_n \rangle\) is a bounded real sequence i.e. \((u_n)\) is bounded in \(W^{1,q}(\mathbb{R}^N)\).

Put
\[
J(u_n) = \int |\nabla u_n|^p dx - \lambda \int g|u_n|^p dx.
\]
By the above considerations, \(J(u_n)\) is a real convergent sequence. So, there exists \(C > 0\) such that
\[
\int |\nabla u_n|^p dx \leq C + \lambda \int g|u_n|^p dx.
\]
By Lemma 2 and the boundedness of \(u_n\) in \(W^{1,q}(\mathbb{R}^N)\) we can find a positive constant, still denoted \(C\), such that
\[
\|u_n\|^p_{1,p} \leq C(1 + \|u_n\|^{pt}_{1,p}). \tag{2.3}
\]

If \(u_n\) is not bounded in \(W^{1,p}(\mathbb{R}^N)\), we can suppose that \(\|u_n\|_{1,p} \to \infty\). By relation 2.3, we have that
\[
\|u_n\|^{p(1-t)}_{1,p} \leq C(1 + \|u_n\|^{-pt}_{1,p}).
\]
Since \(0 < t < 1\) we conclude that \(\|u_n\|_{1,p}\) is bounded which is a contradiction.

Consequently, \(u_n\) is bounded in \(W\) and then there exists \(u \in W\) such that \(u_n \rightharpoonup u\).

It is easy to show that
\[
\lim_{n \to +\infty} \langle I'(u_n) - I'(u), u_n - u \rangle = 0. \tag{2.4}
\]

Next, we will show that
\[
\lim_{n \to +\infty} \int g(|u_n|^{p-2}u_n - |u|^{p-2}u)v dx = 0 \text{ for all } v \in W. \tag{2.5}
\]
We have by Hölder inequality and assumption 1.6 that for any \(R > 0\)
\[
| \int_{B_R} g(|u_n|^{p-2}u_n - |u|^{p-2}u)v dx |
\]
\[\leq \|g\|_\infty \left(\int_{B_R} |u_n|^{p-2}u_n - |u|^{p-2}u|^{|p'|} \right)^{\frac{1}{|p'|}} \left(\int_{B_R} |v|^{p'} \right)^{\frac{1}{p'}}. \]

Here \(B_R \) denotes the ball of radius \(R \) in \(\mathbb{R}^N \) centred at the origin and we will denote \(B'_R = \mathbb{R}^N \setminus B_R \).

So by Sobolev embedding it yields

\[|\int_{B_R} g(|u_n|^{p-2}u_n - |u|^{p-2}u)vdx| \]
\[\leq C\|g\|_\infty \|v\| \left(\int_{B_R} |u_n|^{p-2}u_n - |u|^{p-2}u|^{|p'|} \right)^{\frac{1}{|p'|}}. \]

Since \(u_n \) is weakly convergent to \(u \) in \(W^{1,p}(\mathbb{R}^N) \) then \((\chi_{B_R}u_n) \) is also weakly convergent to \((\chi_{B_R}u) \) in \(W^{1,p}(B_R) \). We can deduce that \((\chi_{B_R}u_n) \) converges strongly to \((\chi_{B_R}u) \) in \(L^{(p')'(p-1)}(B_R) \) since \((p')'(p-1) < p^* \). Then there exists a subsequence, still denoted \((\chi_{B_R}u_n) \), and \(h \in L^{(p')'(p-1)}(B_R) \) such that \(\chi_{B_R}u_n \to \chi_{B_R}u \) a.e. in \(B_R \) as \(n \to \infty \) and for all \(n \), \(|\chi_{B_R}u_n| \leq h \) a.e. in \(B_R \). It follows that \(\chi_{B_R}|u_n|^{p-2}u_n \to \chi_{B_R}|u|^{p-2}u \) a.e. in \(B_R \) and \(\chi_{B_R}|u_n|^{p-1} \to h^{p-1} \) a.e. in \(B_R \). By the Lebesgue Theorem there exists another subsequence, still denoted \((\chi_{B_R}u_n) \), such that \(\chi_{B_R}|u_n|^{p-2}u_n \to \chi_{B_R}|u|^{p-2}u \) strongly in \(L^{(p')'}(B_R) \).

In another hand we have by the Hölder inequality that for any \(v \in W \)

\[|\int_{B'_R} g(|u_n|^{p-2}u_n - |u|^{p-2}u)vdx| \leq \left(\int_{B'_R} g\|u_n|^{p-2}u_n - |u|^{p-2}u|^{|\alpha_p^*|} \right)^{\frac{(p-1)q^*}{|p|}} \cdot \left(\int_{B'_R} g|v|^{|\alpha_p^*$\frac{|q^*-p|}{|p-1|q^*}|} \right)^{\frac{1}{|p|}}. \]

Applying again the Hölder inequality we get

\[\int_{B'_R} g|v|^{|\alpha_p^*$\frac{|q^*-p|}{|p-1|q^*}|} dx \leq \|g\|_{L^{(\frac{\alpha q^*}{p^*})'}(B'_R)} \left(\int_{B'_R} g\frac{p^{q^*-p\alpha} q^{p^*}}{|q^*-p|} |v|^{p^*} dx \right)^{\frac{\alpha q^*}{p^*} |q^*-p|} \]
\[\leq C\|g\|_{L^{(\frac{\alpha q^*}{p^*})'}(B'_R)} \|v\|_{1,p}^{\frac{q^*}{q^*+p\alpha}} \|v\|_{1,p}^{\frac{q^*}{q^*+p\alpha}}. \]

Boundedness of \((u_n) \) together with the above assertions yield

\[|\int_{B'_R} g(|u_n|^{p-2}u_n - |u|^{p-2}u)vdx| \leq C\|g\|_{L^{(\frac{\alpha q^*}{p^*})'}(B'_R)} \|v\|. \]
A CLASS OF EIGENVALUE PROBLEMS... 733

where \(A = \frac{\left(\frac{q^*}{n} \right)'}{\left(\frac{\alpha p^-}{(p-1)q^*} \right)'} \). It follows that

\[
\int_{B_R} g(|u_n|^{p-2}u_n - |u|^{p-2}u)dx \to 0
\]

when \(R \to \infty \), since \(g \in L^1(\frac{q^*}{n})(\mathbb{R}^N) \).

Consequently, \(\lim_{n \to +\infty} \int g(|u_n|^{p-2}u_n - |u|^{p-2}u)dx = 0 \) for all \(v \in W \).

From relations 2.4 and 2.5 we get

\[
\lim_{n \to +\infty} \int (|\nabla u_n|^{p-2}\nabla u_n - |\nabla u|^{p-2}\nabla u)(\nabla u_n - \nabla u)dx + \\
+ \int (|\nabla u_n|^{q-2}\nabla u_n - |\nabla u|^{q-2}\nabla u)(\nabla u_n - \nabla u)dx = 0.
\]

By the Hölder inequality we have

\[
\int (|\nabla u_n|^{p-2}\nabla u_n - |\nabla u|^{p-2}\nabla u)(\nabla u_n - \nabla u)dx \geq \int |\nabla u_n|^p dx + |\nabla u|^p dx - \\
- \left(\int |\nabla u_n|^p dx \right)^{\frac{p-1}{p}} \left(\int |\nabla u|^p dx \right)^{\frac{1}{p}} - \left(\int |\nabla u_n|^p dx \right)^{\frac{1}{p}} \left(\int |\nabla u|^p dx \right)^{\frac{p-1}{p}} \\
= (\|u_n\|_{1,p}^{p-1} - \|u\|_{1,p}^{p-1})(\|u_n\|_{1,p} - \|u\|_{1,p}) \geq 0.
\]

By the same argument it yields

\[
\int (|\nabla u_n|^{q-2}\nabla u_n - |\nabla u|^{q-2}\nabla u)(\nabla u_n - \nabla u)dx \geq (\|u_n\|_{1,q}^{q-1} - \|u\|_{1,q}^{q-1})(\|u_n\|_{1,q} - \|u\|_{1,q}) \geq 0.
\]

It follows that \(\lim_{n \to +\infty} \|u_n\|_{1,p} = \|u\|_{1,p} \) and \(\lim_{n \to +\infty} \|u_n\|_{1,q} = \|u\|_{1,q} \). This together with the weak convergence of \(u_n \) to \(u \) in \(W \) implies that \(u_n \) is strongly convergent to \(u \) in \(W \) and the proof is complete. \(\square \)

Next, we will show that the functional \(I \) given by 1.7 satisfies the Mountain pass geometry.

Lemma 4.

1. There exist \(\rho, \beta > 0 \) such that \(I(u) \geq \beta \) on \(\|u\| = \rho \).

2. There exists \(u_0 \in W \) with \(\|u\| > \rho \) and \(I(u_0) < 0 \).
Proof. (1) Let \(u \in W \), we put \(\rho = \| u \| = \rho_1 + \rho_2 \) were \(\| u \|_{1,p} = \rho_1 \) and \(\| u \|_{1,q} = \rho_2 \). By relation 2.2 it yields

\[
I(u) \geq \frac{1}{p} \rho_1^p - \frac{\lambda}{p} C \| g \|_\infty \| g \|_{(\frac{q}{\alpha})'}^{p(1-t)} \rho_1^p \rho_2^{q(1-t)}
\]

\[
\geq \frac{1}{p} \rho_1^p \left(\rho_1^{p(1-t)} - \lambda C \| g \|_\infty \| g \|_{(\frac{q}{\alpha})'}^{p(1-t)} \rho_2^{q(1-t)} \right)\]

We can choose \(\rho_2 = \varepsilon \) and \(\rho_1 = \left(1 + \lambda C \| g \|_\infty \| g \|_{(\frac{q}{\alpha})'}^{p(1-t)} \varepsilon^{q(1-t)} \right)^{\frac{1}{p(1-t)}} \) for a sufficiently small \(\varepsilon > 0 \). Consequently

\[
I(u) \geq \frac{1}{p} \left(1 + \lambda C \| g \|_\infty \| g \|_{(\frac{q}{\alpha})'}^{p(1-t)} \varepsilon^{q(1-t)} \right)^{\frac{1}{(1-t)}} > 0
\]

for any \(u \in W \) such that \(\| u \| = \left(1 + \lambda C \| g \|_\infty \| g \|_{(\frac{q}{\alpha})'}^{p(1-t)} \varepsilon^{q(1-t)} \right)^{\frac{1}{p(1-t)}} + \varepsilon \).

(2) We denote by \(\varphi \) the normalized eigenfunction associated to the first eigenvalue \(\lambda_1 \) of the \(p \)-Laplacian with weight \(g \), namely

\[-\text{div}(\nabla |\varphi|^{p-2} \nabla \varphi) = \lambda_1 g |\varphi|^{p-2} \varphi \text{ in } \mathbb{R}^N\]

and

\[
\int |\nabla \varphi|^p dx = 1.
\]

Hence,

\[
I(\tau \varphi) = \frac{\tau^p}{p} + \frac{\tau^q}{q} \int |\nabla \varphi|^q dx - \frac{\lambda \tau^p}{p} \int g |\varphi|^p dx, \tau > 0.
\]

Since \(\int g |\varphi|^p dx = \frac{1}{\lambda_1} \) we get

\[
I(\tau \varphi) = \frac{\tau^p}{p} (1 - \frac{\lambda}{\lambda_1}) + \frac{\tau^q}{q} \int |\nabla \varphi|^q dx.
\]

We claim that any eigenvalue of problem 1.4 satisfies \(\lambda > \lambda_1 \). So \(I(\tau \varphi) \rightarrow -\infty \) when \(\tau \rightarrow +\infty \). Consequently, there exists \(\tau_0 > 0 \) such that \(I(\tau_0 \varphi) < 0 \) and we put \(u_0 = \tau_0 \varphi \).
We return now to the claim that any eigenvalue λ of problem 1.4 satisfies $\lambda > \lambda_1$. For this, we introduce the quantity

$$\lambda^* = \inf_{\substack{u \in W, \ u \neq 0}} \frac{\int |\nabla u|^p dx + \int |\nabla u|^q dx}{\int g|u|^p dx}.$$

For any $u \in W$ we have

$$\frac{\int |\nabla u|^p dx + \int |\nabla u|^q dx}{\int g|u|^p dx} \geq \inf_{\substack{u \in W, \ u \neq 0}} \frac{\int |\nabla u|^p dx}{\int g|u|^p dx} \geq \inf_{u \in W^{1,p}(\mathbb{R}^N)} \frac{\int |\nabla u|^p dx}{\int g|u|^p dx} = \lambda_1.$$

So it follows that λ^* is a positive real number.

We suppose that there exists an eigenvalue λ of problem 1.4 such that $\lambda < \lambda^*$. So there exists $v \in W, \ v \neq 0$ that verifies

$$\int |\nabla v|^p dx + \int |\nabla v|^q dx = \lambda \int g|v|^p dx.$$

Then we get

$$\lambda^* > \lambda = \frac{\int |\nabla v|^p dx + \int |\nabla v|^q dx}{\int g|v|^p dx} \geq \inf_{\substack{u \in W, \ u \neq 0}} \frac{\int |\nabla u|^p dx + \int |\nabla u|^q dx}{\int g|u|^p dx} = \lambda^*$$

which is a contradiction. So, there is no eigenvalue less than λ^* and it is clear that $\lambda_1 < \lambda^*$. In addition, λ^* cannot be an eigenvalue of problem 1.4. Indeed, let $u_n \in W$ a minimizing sequence of λ^*. Similar arguments used in [3] show that u_n converges strongly to a nontrivial function $u \in W$ that satisfies

$$p \int |\nabla u|^{p-2} \nabla u. \nabla wdx + q \int |\nabla u|^{q-2} \nabla u. \nabla wdx = \lambda^* p \int g|u|^{p-2} wdx$$

for all $w \in W$. This fact together with definition 2.1 implies that

$$\int |\nabla u|^{q-2} \nabla u. \nabla wdx = 0 \text{ for all } w \in W.$$

Hence, $u \equiv 0$ which is a contradiction.

Proof of Theorem 1. Define the minimax class

$$B = \{ \psi \in C([0, 1], W), \psi(0) = 0, \psi(1) = u_0 \}$$

and the corresponding minimax level

$$c = \inf_{\psi \in B} \max_{\tau \in [0, 1]} I(\psi(\tau)).$$
By the previous lemmas it follows that the assumptions of the Mountain-Pass Theorem are fulfilled. Therefore for any $\lambda > \lambda^*$, c is a critical value of I associated to a critical point $u_\lambda \in W$. Namely, $I'(u_\lambda) = 0$ and $I(u_\lambda) = c$. By Lemma 4(1) we have necessarily $c \geq \frac{1}{p}(1 + \lambda C \|g\|_\infty \|g\|_{p\frac{p-1}{2}} \varepsilon_{q(1-t)}^{1-t} (q^{1-t})^{\frac{1-p}{p-1}} > 0$. Hence, u_λ cannot be trivial since $I(0) = 0$. Hence, Theorem 1 is proved.

Acknowledgments

Project supported by the grants of PNR 8/u23/272 ANDRU of Algeria.

References

