Abstract: In earlier papers the author has used schemes to establish some bounds in small large cardinal theory. Here the methods are improved, yielding improved bounds.

AMS Subject Classification: 03E55
Key Words: Mahlo rank, Galvin-Hajnal order, ordinal systems

1. Introduction

The author has produced a series of papers on schemes; see [5] for an overview. This paper adds to the series. Notation as in [5] will be used. Section 2 provides a justification of axiom G. Section 3 gives an overview of chains in the Galvin-Hajnal order, and in the stationary reflection order. In Section 4 scheme terms are defined. Section 5 gives a construction from scheme terms of function in the Galvin-Hajnal order. Section 6 gives a construction from scheme terms of stationary subsets of κ. Section 7 proves enforceability of the sets constructed in Section 6, giving an improved bound on the Mahlo rank of weakly compact cardinals. Section 8 gives a discussion of new axioms, and proposes a specific axiom which seems justified in view of the results of this paper. Section 9 provides some observations on conjecture 2 of [4].

2. Axiom G

Recall from [5] the definitions of M_Σ and A_Σ. Axiom G is the statement, “$\forall \Sigma A_\Sigma$.” A straightforward attempt to justify axiom G by induction on Σ
M. Dowd

encounters the difficulty that, if \(M_\Sigma \) is stationary in \(V \), it can’t be concluded that there is a \(\kappa \) where \(M_\Sigma \) is stationary, because \(\Sigma \) turns in to a set if \(V \) is collected and is meaningless in the enlarged \(V \).

The difficulty suggests its solution. A “sufficiently large” universe \(V \) is postulated, and “current universes” collected within \(V \). \(V \) provides a “stock” of schemes. The current universe equals \(V_\mu \) where \(\mu \) is the current value of \(\text{Ord} \); \(M_\Sigma \) equals \(M_\Sigma \cap \mu \), and \(\text{Lim}M_\Sigma (X) \) equals \(\text{Lim}(X) \cap M_\Sigma \cap \mu \). With these adjustments, the inductive justification of cases 1 to 4 of axiom \(A_\Sigma \) is similar to the justification of the axioms \(I_1 \) to \(I_4 \) given in [4].

In justifying \(A_\Sigma \) it may be assumed that the current \(V \) can be taken (after collecting) to be in \(M_\Sigma \). In case 1, collecting the current \(V \) yields an element of \(M_\Sigma \); iterating, \(M_\Sigma \) is unbounded in a larger \(V \). In case 2, collecting the current \(V \) yields an element of \(\text{Lim}M_\Sigma \); iterating, \(M_\Sigma \) is unbounded in a larger \(V \). In case 3, it may be assumed that \(\mu \notin T_\Sigma \); then \(\Sigma \) may be replaced by \(\Sigma \downarrow \mu \) (see [5] for \(T_\Sigma \) and \(\downarrow \)). Collecting \(V \), \(\mu \in \text{Lim}M_\Sigma (X_\xi) \) for each \(\xi \), so \(\mu \in X_\xi \) for each \(\xi \), so \(\mu \in \cap \xi \); iterating, \(M_\Sigma \) is unbounded in a larger \(V \). Case 4 is similar to case 3.

The preceding argument justifies \(A_\Sigma \) inductively if \(\text{cf}(\sigma) \) is a successor ordinal. If the rank of \(\Sigma \) is a limit ordinal less than \(\text{Ord}^+ \), it may be assumed that \(\mu \notin T_\Sigma \). If \(V \) is \(M_\Sigma \xi \) for all \(\xi \) then \(V \) is \(M_\Sigma \), so \(M_\Sigma \) is unbounded. The argument is similar when the rank of \(\Sigma \) is \(\text{Ord}^+ \).

The exercise of proving that the existence of greatly Mahlo cardinals is equivalent to the existence of \(V_\kappa \) satisfying axiom \(G \), and of justifying axiom \(G \), may seem like an academic one, and indeed the author takes the viewpoint in [2] that it is reasonable to assume that the Mahlo operation can be iterated in collecting the universe. But a greater understanding of the behavior of small (“generalized Mahlo”) cardinals, and of their relation to foundational issues, has been achieved; and the supposition that the Mahlo operation may be iterated more thoroughly justified.

3. Chains

Adopting notation from earlier papers, Let Inac denote the inaccessible cardinals, and for \(\kappa \in \text{Inac} \) let \(\text{In}_\kappa \) denote \(\text{Inac} \cap \kappa \), and let \(\text{In}_\kappa^0 \) denote \(\text{In}_\kappa \cup \{0\} \).

For a filter \(F \) on a cardinal \(\kappa \) and \(f, g : \kappa \to \kappa \) write \(f <_F g \) if \(\{ \lambda : f(\lambda) < g(\lambda) \} \in F \). Similarly \(f \leq_F g \) if \(\{ \lambda : f(\lambda) \leq g(\lambda) \} \in F \) Basic facts concerning this relation may be found in [6]. \(\rho_F \) will be used to denote the rank function of the order \(<_F \). For \(\kappa \in \text{Inac} \) let \(F_C \) denote the club filter; \(<_{F_C} \) is often called
the Galvin-Hajnal order.

For a nonempty subset $S \subseteq \kappa$, write $F \upharpoonright S$ for $\{X \cap S : X \in F\}$; this is readily seen to be a filter. If κ is Mahlo, F is the club filter, and S is In_κ, the resulting order will be denoted $<_*$, and the rank function ρ_*. This is an alternative to $<_{F_C}$ which is convenient for some uses. For example, the canonical functions f_Σ for schemes Σ may be defined in $<_{F_C}$, and considered in $<_*$ by restricting to In_κ. The function f_{κ^+} is conveniently defined in $<_*$ as $\lambda \mapsto \lambda^+$; it can be defined in $<_{F_C}$ as $\alpha \mapsto |\alpha|^+$.

Recalls (see, e.g., [5]) that for F a normal κ-complete filter on κ, the following operations are of defined. Given an ordinal $\eta < \kappa$ and a sequence f_ξ for $\xi < \eta$ let $\sup_{\xi < \eta} f_\xi$ be the function f where $f(\gamma) = \sup_{\xi < \eta} f_\xi(\gamma)$. Given a sequence f_ξ for $\xi < \kappa$ let $\sup_{\xi < \kappa} f_\xi$ be the function f where $f(\gamma) = \sup_{\xi < \gamma} f_\xi(\gamma)$. It is readily seen that $\sup_{\xi < \eta} f_\xi$ is the supremum in the order \leq_F of the f_ξ; and similarly for Finally, note that for κ Mahlo (in fact under weaker hypotheses) $F_C \upharpoonright \text{Inac}$ is normal.

In what follows, classes α in V_κ will be used as codes for ordinals $\alpha < \kappa^{++}$. Functions f_α will be defined, so that if $\beta < \alpha$ then $f_\beta <_* f_\alpha$. It is readily seen that it suffices that $f_\beta <_* f_\alpha$ if $\beta < \alpha$, and if $\alpha = \beta + 1$ then $f_\beta <_* f_\alpha$. Choosing a code for each ordinal $\alpha < \sigma$ for an ordinal σ yields a (strictly increasing) chain $\langle f_\alpha : \alpha < \sigma \rangle$ in $<_*$.

As in earlier papers, for example [5], for $\kappa \in \text{Inac}$, for $X, Y \subseteq \kappa$ say that $X \subseteq^* Y$ if $X - Y$ is thin. For $X \subseteq \text{In}_\kappa^\emptyset$ let $H(X) = \{\lambda \in X : X \cap \lambda$ is a stationary subset of $\lambda\}$.

For $X, Y \subseteq \text{In}_\kappa^\emptyset$ say that $X <^*_R Y$ if $Y \subseteq^* H(X)$ and let ρ_R denote the rank function.

Defining sets S_α for codes α is also of interest, where S_α is a stationary subset of $\text{In}_\kappa^\emptyset$. The desired property of these sets is $S_\beta <_R S_\alpha$ for $\beta < \alpha$. It suffices that $S_\beta \supseteq^* S_\alpha$ if $\beta < \alpha$, and $S_\beta <_R S_\alpha$ if $\alpha = \beta + 1$.

Given functions f_α such that $f_\beta <_* f_\alpha$ if $\beta < \alpha$, consider the sets $S_\alpha = \{\lambda \in \text{In}_\kappa : \rho_R(\lambda) \geq f_\alpha(\lambda)\}$. Clearly $S_\beta \supseteq^* S_\alpha$ if $\beta < \alpha$. However whether, for example, $\rho_R(\lambda) > \lambda^+$ implies that $\{\mu \in \text{Inac} : \mu < \lambda$ and $\rho(\mu) \geq \mu^+\}$ is stationary, is a question which the author has been unable to settle. Indeed, if $\rho_R(\kappa) > \kappa^+$ where κ is the smallest greatly Mahlo cardinal, then the question has a negative answer. In view of this, the sets S_α must be defined directly, in particular so that $S_\alpha \equiv^* H(S_\beta)$ when $\alpha = \beta + 1$.

4. Scheme Terms

Similarly to definitions in [10], a scheme term over $\kappa \in \text{Inac}$ is defined to be a finitary term whose interior nodes are ordinal valued functions of ordinal arguments, and whose leaves are schemes over κ. A scheme term system is given by an adequately effective enumeration of a countable collection of integer names for the functions, and rules for singling out which terms are in normal form. In [10], successively stronger term-based ordinal notation systems are considered, namely, Cantor normal form (CNF), binary Veblen functions (BV), finitary Veblen functions, and Klammersymbols. In this paper, only CNF and BV will be considered; consideration of stronger systems, and of scheme term systems in general, is left to further research.

CNF has already been considered in [5]. As is well-known (see [8] for example) if $\beta > 1$ is an ordinal then any nonzero ordinal α can be written uniquely as $\beta^{\eta_k} \cdot \sigma_k + \cdots + \beta^{\eta_1} \cdot \sigma_1$, where $k \geq 1$, $\sigma_i < \beta$, and $\eta_k > \cdots > \eta_1$. In the CNF scheme term system over κ where $\kappa \in \text{Inac}$, $\beta = \kappa^+$. There is a function f_k for each k and a constant 0. An NF term is of the form $f(\eta, \sigma_k, \ldots, \eta_1, \sigma_1)$ where the η_i are NF terms with $\eta_k > \cdots > \eta_1$, and σ_i is a scheme. Note that 0 can occur only as the root, or as some η_1.

As in [5], let \odot denote the ordinal exponentiation function, and define \uparrow by the recursion $\alpha \uparrow 0 = 1$, $\alpha \uparrow (\beta + 1) = \alpha \odot (\alpha \uparrow \beta)$, and $\alpha \uparrow \beta = \sup_{\beta' < \beta} \alpha \uparrow \beta'$ for $\beta \in \text{Lim}$. It is easily seen that the closure ordinal of the scheme term system over κ with just the Cantor normal form functions is $\kappa^+ \uparrow \omega$; this ordinal will be denoted $\epsilon_{0\kappa}$.

As for ω, the function $\alpha \mapsto \kappa^{+\alpha}$ can serve as the base of a “Veblen hierarchy”, which for the purposes of this paper will be said to be over κ. The hierarchy is given by the binary function ϕ where $\phi(0, \alpha) = \kappa^{\alpha}$; and for $\beta > 0$ $\phi(\beta, \alpha)$ is the αth element in the enumeration of the values which are fixed points of each function $\alpha \mapsto \phi(\beta', \alpha)$ for $\beta' < \beta$. The function ϕ over κ will also be denoted as ϕ_κ.

In a NF term in any system, the value at a node must be greater than the value at its sons (this restriction is redundant for the system CNF). The system BV over κ is obtained from CNF by adding the function ϕ, and imposing the foregoing restriction, and the restriction that 0 not occur as the first argument of ϕ. The closure ordinal of BV will be denoted as $\Gamma_{0\kappa}$. Using arguments as in [9] the following are readily shown. For every ordinal $\alpha < \Gamma_{0\kappa}$ there is a term α for α; this term is unique up to replacing schemes by schemes of the same rank.

Writing the Cantor normal form for α as $\kappa^{+\eta_k} \cdot \sigma_k + \cdots + \kappa^{+\eta_1} \cdot \sigma_1$, α may
be determined by recursion by breaking the root into the following cases. In cases 2 to 6, $k = 1$ and α is written as $\kappa^+ \eta \cdot \sigma$

Case 0: $\alpha = 0$

Case 1: $k > 1$

Case 2: $\eta = 0$ (so α is a scheme)

Case 3: $\sigma > 1$, $\eta > 0$

Case 4: $\sigma = 1$, $\eta = 1$ (so $\alpha = \kappa^+$)

Case 5: $\sigma = 1$, $\eta = 1$, $\eta < \kappa^+$

Case 6: $\sigma = 1$, $\eta = \kappa^+ \eta$. In this case, $\alpha = \phi(\beta, \gamma)$ where $\beta, \gamma < \alpha$.

Recall from [5] the definitions for a scheme σ of $\sigma \leq \tau$ for $\tau \leq \sigma$, T_σ, and $\sigma \downarrow \lambda$ for $\lambda \in \text{In}_\kappa$; and their basic properties. For a term α let T_α be the union over the σ occurring at leaves of α of the T_σ. Let $\alpha \downarrow \lambda$ be α, with each leaf σ replaced by $\sigma \downarrow \lambda$. Given α, the notation $\alpha \downarrow \lambda$ will be used to denote the ordinal specified by $\alpha \downarrow \lambda$; note that in this computation, κ^+ is replaced by λ^+ and ϕ by ϕ_λ.

When giving proofs by induction on schemes, in case 1 of the recursive definition (q.v. see [5]) τ will be used to denote $\sigma \leq \tau$, and in cases 2 and 3 $f_{\sigma \xi}$ will be used to denote $\sigma \leq \sigma \xi$. Also, familiarity with lemma 3 of [5] will be assumed.

Lemma 1. Suppose α is a term, $\lambda \in \text{In}_\kappa$, and $\lambda \notin T_\alpha$. If α is a successor ordinal then $\alpha \downarrow \lambda$ is a successor ordinal. If $\text{cf}(\alpha) = \theta$ where $\theta < \kappa$ then $\theta < \lambda$ and $\text{cf}(\alpha \downarrow \lambda) = \theta$. If $\text{cf}(\alpha) = \kappa$ then $\text{cf}(\alpha \downarrow \lambda) = \lambda$.

Proof. This follows readily by induction on σ and then α. The case $\alpha = \phi(\beta, \gamma)$ may be broken into the following cases; $\text{cf}(\alpha)$ is given for each case.

$\beta = 1$, $\gamma = 0$. κ^+.

$\beta = 1$, $\gamma = \gamma' + 1$. ω.

$\beta = \beta' + 1$, $\gamma = 0$. ω.

$\beta = \beta' + 1$, $\gamma = \gamma' + 1$. ω.

$\beta \in \text{Lim}$, $\gamma = 0$. $\text{cf}(\beta)$.

$\beta \in \text{Lim}$, $\gamma = \gamma' + 1$. $\text{cf}(\beta)$.

$\gamma \in \text{Lim}$. $\text{cf}(\gamma)$.

5. Functions from Terms

Suppose κ is a Mahlo cardinal. For each BV term α, a function $f_\alpha : \text{In}_\kappa \mapsto \kappa$ will be defined. First, the definition of f_σ for a scheme σ will be reviewed. The cases are as follows.
Case 0: If \(\sigma = 0 \) then \(f_0 = 0 \) (the zero function).
Case 1: If \(\sigma = \tau + 1 \) then \(f_\sigma = f_\tau + 1 \).
Case 2: If \(\eta < \kappa \) is a limit ordinal and \(\sigma_\xi \) for \(\xi < \eta \) is the ascending chain with limit \(\sigma \) then \(f_\sigma = \sup_{\xi < \eta} f_{\sigma_\xi} \).
Case 3: If \(\sigma_\xi \) for \(\xi < \kappa \) is the ascending chain with limit \(\sigma \) then \(f_\sigma = dsup_{\xi < \kappa} f_{\sigma_\xi} \).

Lemma 2. If \(\sigma' \leq \sigma \) then \(f_{\sigma'} \leq_* f_\sigma \).

Proof. This follows by properties of canonical functions, but a direct proof is of interest; the proof is by induction on \(\sigma \). In case 0, \(\sigma' = 0 \) also and the claim is immediate. In case 1, if \(\sigma' \leq \tau \) then inductively \(f_{\sigma'} \leq_* f_\tau \), and clearly \(f_\tau <_* f_\sigma \). If \(\sigma' = \sigma \) then inductively \(f_{\sigma'_{\leq \tau}} \equiv_* f_{\sigma_{\leq \tau}} \), and \(f_{\sigma'} \equiv_* f_\sigma \) follows. In case 2, if \(\sigma' < \sigma \) then \(\sigma' < \sigma_\xi \) for some \(\xi \) where \(\langle \sigma_\xi : \xi < \eta \rangle \) is the sequence ascending to \(\sigma \). Inductively, \(f_{\sigma'} \leq_* f_{\sigma_{\leq \sigma_\xi}} \), and clearly \(f_{\sigma_{\leq \sigma_\xi}} \leq_* f_\sigma \). If \(\sigma' = \sigma \) let \(\langle \sigma_\xi' : \xi < \eta' \rangle \) be the sequence ascending to \(\sigma' \). By what was just proved, \(f_{\sigma_\xi'} \leq_* f_\sigma \) for all \(\xi < \eta' \), whence \(f_{\sigma'} \leq_* f_\sigma \). The argument for case 3 is similar to that for case 2.

Lemma 3. If \(\sigma = \tau + 1 \) then \(f_\sigma \equiv_* f_\tau + 1 \).

Proof. Let \(\tau_1 = \sigma_{\leq \tau} \) and use lemma 2.

For a BV term \(\alpha, f_\alpha : \text{In}_\kappa \rightarrow \kappa \) is defined by recursion on \(\alpha \), per case as given in the previous section, as follows.

0. \(f_0 = 0 \)
1. \(f_{\kappa + \eta_0 \cdot \sigma_0} \)
2. \(f_\sigma \) where \(\sigma \) is the scheme \(\alpha \).
3. \(f_{\kappa + \eta \cdot f_\sigma} \)
4. \(f_\alpha (\lambda) = \lambda^+ \)
5. \(f_\alpha (\lambda) = \lambda + f_\eta (\lambda) \)
6. \(f_\alpha (\lambda) = \phi_\lambda (f_\beta (\lambda), f_\gamma (\lambda)) \)

Theorem 4. Suppose \(\alpha \) is a term, \(\lambda \in \text{In}_\kappa \), and \(\lambda \notin T_\alpha \).

a. \(f_\alpha \downarrow \lambda = f_{\alpha \downarrow \lambda} \).
b. \(f_\alpha (\lambda) = \alpha \downarrow \lambda \).

Proof. For schemes this is lemma 5 of [4] and lemma 5 of [5]; for CNF it is lemma 17 of [5]. Case 6 of the recursion will be given. For part a, for \(\mu < \lambda < \kappa \)
\(f_{\alpha \downarrow \lambda} (\mu) = f_{\phi_\lambda (\beta \downarrow \lambda, \gamma \downarrow \lambda)} (\mu) = \phi_\mu (f_{\beta \downarrow \lambda} (\mu), f_{\gamma \downarrow \lambda} (\mu)) = \phi_\mu (f_\beta (\mu), f_\gamma (\mu)) = f_{\phi (\beta, \gamma)} (\mu) = f_\alpha (\mu) \). For part b, \(f_\alpha (\lambda) = f_{\phi (\beta, \gamma)} (\lambda) = \phi_\lambda (f_\beta (\lambda), f_\gamma (\lambda)) = \phi_\lambda (\beta \downarrow \lambda, \gamma \downarrow \lambda) = \phi (\beta, \gamma) \downarrow \lambda = \alpha \downarrow \lambda \).
Theorem 5. If \(\alpha' = \alpha \) then \(f_{\alpha'} \equiv_* f_\alpha \), and if \(\alpha' < \alpha \) then \(f_{\alpha'} <_* f_\alpha \).

Proof. Both statements are proved by induction on \(\alpha \). If \(\alpha' = \alpha \) then case 2 of the induction follows by lemma 2, and in the other cases the ordinals of the subterms \(\tau \) are all equal, so inductively the \(f_\tau \) are equal mod \(\equiv_* \), so \(f_{\alpha'} \equiv_* f_\alpha \).

Suppose \(\alpha' < \alpha \). Write \(\alpha \) in CNF as usual, and write \(\alpha' \) as \(\kappa + \eta + \cdots + \kappa' + \sigma_1 \). The cases of the induction are as follows.

Case 0 is vacuous.

In case 1, by properties of CNF and induction, leading equal terms may be removed from \(\alpha' \) and \(\alpha \). The rest of the argument is similar to that for case 3.

Case 2 follows by lemmas 2 and 3.

In case 3, if \(\alpha' \leq \kappa + \eta \cdot \sigma_1 \) for some \(\sigma_1 < \sigma \), let \(\sigma_1 = \sigma_{<\sigma_1} \). Then inductively \(f_{\alpha'} <_* f_{\kappa + \eta \cdot \sigma_1} \), and from the definition of \(f_\alpha \) and properties of canonical functions \(f_{\kappa + \eta \cdot \sigma_1} \leq_* f_{\kappa + \eta} \). Otherwise, the first term of the CNF for \(\alpha' \) is \(\kappa + \eta \cdot \sigma' \) where \(\sigma = \sigma' + 1 \). Letting \(\sigma_1 = \sigma_{<\sigma'} \), \(f_{\alpha'} <_* f_{\kappa + \eta \cdot \sigma_1} + f_{\kappa + \eta} \). The right side equals \(f_{\kappa + \eta} \cdot (f_{\sigma_1} + 1) = f_{\kappa + \eta} \cdot f_{\sigma} = f_{\alpha} \).

In case 4, \(\alpha' \) is a scheme and the claim follows because for any scheme \(\sigma \) and \(\lambda \in \text{In}_K, f_{\sigma}(\lambda) < \lambda^+ \).

In case 5, if \(\alpha' \leq \kappa + \eta_1 \) for some \(\eta_1 < \eta \), let \(\eta_1 = \eta_{<\eta_1} \). Then inductively \(f_{\alpha'} <_* f_{\kappa + \eta_1} \), and from the definition of \(f_\alpha \) and properties of canonical functions \(f_{\kappa + \eta_1} \leq_* f_{\kappa + \eta} \). Otherwise, the first term of the CNF for \(\alpha' \) is \(\kappa + \eta \cdot \sigma' \) where \(\eta = \eta' + 1 \); let \(\eta_1 = \eta_{<\eta'} \). Similarly to case 3, \(f_{\alpha'} <_* f_{\kappa + \eta' \cdot \sigma} \). Letting \(f \circ g \) denote the pointwise operation, the right side equals \(f_{\kappa + \sigma_1} \cdot f_{\kappa + \sigma} = f_{\kappa + \sigma_1} \circ (f_{\sigma_1} + 1) = f_{\kappa + \sigma} \circ f_{\sigma} = f_{\alpha} \).

The proof of case 6 will be broken up into subcases. First note that a simple induction shows that \(f_\alpha(\lambda) < \Gamma_{\alpha \lambda} \) for any \(\alpha \) and \(\lambda \). It follows that \(f_\beta, f_\gamma < f_{\phi(\beta, \gamma)} \) for any \(\beta, \gamma \) (i.e., the inequality holds for all \(\lambda \)).

\(\beta = 1, \gamma = 0 \). Then \(\alpha' < \kappa + \eta \cdot \sigma \) for some \(\eta, \sigma \), so \(f_{\alpha'} <_* f_{\kappa + \eta} <_* f_{\kappa + \eta \cdot \sigma} \).

\(\beta = 1 \) and \(\alpha' < \phi(1, \gamma_1) \) for some \(\gamma \). Then \(f_{\alpha'} <_* f_{\phi(1, \gamma_1)} <_* f_{\phi(1, \gamma)} \).

\(\beta = 1, \gamma = \gamma_1 + 1, \) and \(\phi(1, \gamma_1) \leq \alpha' \). Let \(\theta_0 = \phi(1, \gamma_1) \) and for \(n < \omega \) let \(\theta_{n+1} = \kappa^+ \circ \theta_n \). Then \(\alpha' < \theta_n \) for some \(n \), and \(f_{\alpha'} <_* f_{\theta_n} <_* f_{\alpha} \).

\(\beta > 1 \). \(\alpha = \phi(1, \xi) \) where \(\xi \in \text{Lim} \), so \(\alpha' < \phi(1, \zeta) \) for some \(\zeta < \xi \), and \(\phi(1, \zeta) = \phi(\beta_1, \gamma_1) \) for a unique \(\beta_1, \gamma_1 \) with \(\beta_1, \gamma_1 \leq \phi(1, \gamma_1) \). Choose terms \(\beta_1, \gamma_1 \) for \(\beta_1, \gamma_1 \). Then \(f_{\alpha'} <_* f_{\phi(\beta_1, \gamma_1)} <_* f_{\phi(\beta, \gamma)} \).

This concludes the proof of theorem 5.

\(\Box \)

Theorem 6. If \(\alpha = \beta + 1 \) then \(f_\alpha \equiv_* f_\beta + 1 \).

Proof. If \(\beta = 0 \) the claim is immediate. If \(\eta_1 \) in the CNF for \(\beta \) equals 1 the claim follows using lemma 3. If \(\eta_1 > 1 \) \(\alpha \) has the additional term “1” to \(\beta \) and the claim follows easily.

\(\Box \)
Theorem 7. Suppose \(\theta < \kappa \) and \(\alpha_\xi \) for \(\xi < \theta \) is a sequence of terms; and \(\alpha \) is a term. Suppose \(\alpha_\xi \) is ascending and \(\alpha = \sup_\xi \alpha_\xi \). Then \(f_{\alpha} \equiv \sup_\xi f_{\alpha_\xi} \). Suppose the sequence of terms is \(\alpha_\xi \) for \(\xi < \kappa \). Then \(f_{\alpha} \equiv \ast \sup_\xi f_{\alpha_\xi} \).

Proof. The proof is by induction on \(\alpha \). In each case \(\alpha_\xi \) is replaced by a sequence \(\alpha'_\xi \), and the claim proved either using the induction hypothesis or directly.

Case 0 is impossible.

In case 1, \(\alpha'_\xi \) differs from \(\alpha \) only in the last term; the claim follows using the induction hypothesis.

In case 2, let \(\sigma'_\xi \) be the sequence given by the last node of \(\sigma \).

In case 3, \(\alpha'_\xi \) equals \(\kappa^+ \eta \cdot \sigma'_\xi \) for some \(\sigma'_\xi \); the claim follows inductively.

Case 4 is impossible.

In case 5, \(\eta \) must be a limit ordinal, and \(\alpha'_\xi \) equals \(\kappa^+ \eta_{\xi'} \) for some \(\eta_{\xi'} \); the claim follows inductively.

The proof of case 6 is divided into subcases. Some direct verifications involve verifying an equation per \(\lambda \), possibly using lemmas 1 and 4.

\(\beta = 1, \gamma = 0 \). \(\alpha'_n \) for \(n < \omega \) equals \(\kappa^+ \uparrow n \); the claim follows directly.

\(\beta = 1, \gamma = \gamma' + 1 \). \(\alpha'_0 = \phi(1, \gamma') + 1 \), and for \(n < \omega \) \(\alpha'_{n+1} = \kappa^+ \odot \alpha'_n \); the claim follows directly.

\(\beta = \beta' + 1, \gamma = 0 \). \(\alpha'_0 = \phi(\beta', 0) \), and for \(n < \omega \) \(\alpha'_{n+1} = \phi(\beta', \alpha'_\xi) \); the claim follows directly.

\(\beta = \beta' + 1, \gamma = \gamma' + 1 \). \(\alpha'_0 = \phi(\beta', \gamma' + 1) \), and for \(n < \omega \) \(\alpha'_{n+1} = \phi(\beta', \alpha'_\xi) \); the claim follows directly.

\(\beta \in \text{Lim}, \gamma = 0 \). \(\alpha'_\xi = \phi(\beta_\xi, 0) \) for some \(\beta_\xi \); the claim follows inductively.

\(\beta \in \text{Lim}, \gamma = \gamma' + 1 \). Let \(\beta_\xi \) be terms with \(\beta_\xi \) an ascending sequence with supremum \(\beta \). Let \(\alpha'_0 = \phi(\beta, \gamma') \), let \(\alpha'_{\xi+1} = \phi(\beta', \alpha'_\xi) \). and for \(\xi \in \text{Lim} \) let \(\alpha'_\xi \) be some term with \(\alpha'_{\xi'} = \sup_{\xi' < \xi} \alpha'_{\xi'} \). The claim follows in the case cf(\(\beta \)) = cf(\(\alpha \)) < \kappa, and in the case cf(\(\beta \)) = \kappa also.

\(\gamma = \in \text{Lim}. \alpha'_\xi = \phi(\beta, \gamma_\xi) \) for some \(\gamma_\xi \); the claim follows inductively.

This concludes the proof of theorem 7.

Theorem 8. If \(U \) is a normal ultrafilter on \(\kappa \) then \(f_{\sigma} \) represents \(\sigma \) in \(V^{\kappa}/U \).

Proof. For CNF this is theorem 16 of [5]. The argument for case 6 of the recursion is as follows. Let \(Phi(\lambda, \beta, \gamma) = \phi_\lambda(\beta, \gamma) \), and let \(\Phi \) act on functions pointwise. Then \(f_{\alpha} = \Phi(f_{\kappa^+}, f_{\beta}, f_{\gamma}) \). The claim follows by Los' theorem.
6. Sets from Terms

To construct sets \(S_\alpha \) from terms, functionals \(H_n^\alpha \) of height \(n \) will be constructed, simultaneously for all \(n \) by recursion on \(\alpha \). \(S_\alpha = H_1^\alpha(I_n) \). Various ingredients of the construction have already been given in [3]. Relevant facts will be summarized below; see [3] for further details.

For \(\kappa \in \inac \) and \(n \geq 1 \) the set \(\mathcal{L}_n \) of local functionals of height \(n \) over \(\kappa \) is defined recursively. If \(F_n \in \mathcal{L}_n \) then \(F_n : \mathcal{L}_{n-1} \rightarrow \mathcal{L}_{n-1} \), where for convenience \(\mathcal{L}_0 \) denotes \(\text{Pow}(\kappa) \). If necessary \(\mathcal{L}_n \) may be denoted as \(\mathcal{L}_n^{\kappa} \), and for \(\lambda \in \inac \) there is a restriction operator \(\downarrow \) from \(\mathcal{L}_n \) to \(\mathcal{L}_n^\lambda \). \(\mathcal{L}_n \) is closed under the composition operation \(\circ \). The operations \(\cap \) and \(\bigtriangleup \) may be defined on \(\mathcal{L}_n \) “recursively pointwise”. The operation \(| \) commutes with \(\circ, \cap \) and \(\bigtriangleup \). For a scheme \(\sigma \) and a functional \(F_n \in \mathcal{L}_n \) the functional \(F_n^\sigma \) is readily defined, and is an element of \(\mathcal{L}_n \).

The operation \(F_n \mapsto F_n^* \) is defined by the requirement that for \(\lambda \in \inac \), \(\lambda \in F_n^*(F_{n-1}) \ldots (F_1)(X) \) iff \(\lambda \in F_{n-1} \ldots (F_1)(X) \) and \(F_n^*(F_{n-1}) \ldots (F_1)(X \cap \lambda) \) is stationary for all schemes \(\sigma \) over \(\lambda \) (where of course in the latter expression \(F_j \) is \(F_j \{ \lambda \} \). \(F_n^* \in \mathcal{L}_n \), and \(F_n^* \downarrow \lambda = (F_n \downarrow \lambda)^* \). For \(n \geq 2 \) let \(H_n \) be the map \(F_{n-1} \mapsto F_{n-1}^* \) (let \(H_1 \) denote \(H \)). \(H_n \in \mathcal{L}_n \) for \(n \geq 1 \), and each \(\mathcal{L}_n \) contains the identity function, which will be denoted \(\text{Id} \).

For \(F_n, G_n \in \mathcal{L}_n \), say that \(F_n \subseteq G_n \) iff

\[
\forall F_{n-1} \ldots \forall X (F_n(F_{n-1}) \ldots (F_1)(X) \subseteq G_n(F_{n-1}) \ldots (F_1)(X))
\]

The relation \(F_n \preceq_1 G_n \) is similarly defined. Basic properties of these relations are left to the reader.

Initially the construction will be given for CNF terms. For each term \(\alpha \), functionals \(H_{n\alpha} \in \mathcal{L}_{\alpha} \) are defined by recursion on \(\alpha \). The cases of the recursion are as follows.

Case 0: \(\text{Id} \)

Case 1: \(H_{n\kappa+\eta_1 \cdot \sigma_1} \circ \cdots \circ H_{n\kappa+\eta_k \cdot \sigma_k} \)

Case 2: \(H_n^\sigma \)

Case 3: \(H_{n+1}^{\sigma + \eta} \)

Case 4: \(H_{n+1}(H_n) \)

Case 5: \(H_{n+1}(H_n) \)

Lemma 9.

1. If \(F_{n-1} \subseteq_1 G_{n-1} \) then \(H_n(F_{n-1}) \subseteq_1 H_n(G_{n-1}) \).

2. \(H_n(F_{n-1}) \subseteq F_{n-1} \).

3. If \(F_n \subseteq_1 G_n \) then \(F_n(F_{n-1}) \subseteq_1 G_n(F_{n-1}) \).

Proof. These all follow directly from the definitions. \(\square \)
\textbf{Lemma 10.} If $\sigma' \leq \sigma$ then $H_{n\sigma'} \supseteq t H_{n\sigma}$.

\textit{Proof.} A direct proof by induction on σ will be given. In case 0, $\sigma' = 0$ also and the claim is immediate. In case 1, if $\sigma' \leq \tau$ then inductively $H_{n\sigma'} \supseteq t H_{n\tau}$, and by lemma 9 $H_\tau \supseteq H_\sigma$. If $\sigma' = \sigma$ then inductively $H_{n\sigma' \leq \tau} \equiv t H_{n\sigma' \leq \tau}$, and $H_{n\sigma'} \equiv t H_{n\sigma}$ follows. In case 2, if $\sigma' < \sigma$ then $\sigma' < \sigma_\xi$ for some ξ where $\langle \sigma_\xi : \xi < \eta \rangle$ is the sequence ascending to σ. Inductively, $H_{n\sigma'} \supseteq t H_{n\sigma' \leq \sigma_\xi}$, and clearly $H_{n\sigma' \leq \sigma_\xi} \supseteq H_{n\sigma}$. If $\sigma' = \sigma$ let $\langle \sigma_\xi' : \xi < \eta' \rangle$ be the sequence ascending to σ'. By what was just proved, $H_{\sigma_\xi'} \supseteq t H_{n\sigma}$ for all $\xi < \eta'$, whence $H_{n\sigma'} \supseteq t H_{n\sigma}$. The argument for case 3 is similar to that for case 2. \hfill \Box

\textbf{Lemma 11.} If $\sigma = \sigma' + 1$ then $H_{n\sigma} \equiv t H_{n\sigma'}$. \hfill \Box

\textbf{Lemma 12.} For $n \geq 1$ and a term α let $F_n = H_{n\alpha}$. Then

$$F_n(F_{n-1}) \cdots (F_1)(X) \subseteq F_{n-1} \cdots (F_1)(X) \cup \{0\}.$$

\textit{Proof.} For ease of notation, in expressions $F_n(F_{n-1}) \cdots (X)$, $n = 1$ is allowed; $F_{n-1} = X$ and “$\cdots (X)$” is the null string. The claim is first proved for a scheme σ, by induction on σ, with cases as follows.

Case 0 is trivial. For case 1, $H_{n}^\sigma(F_{n-1}) \cdots (X) = H_{n}(H_{n}^\tau(F_{n-1})) \cdots (X) \subseteq H_{n}^\tau(F_{n-1})) \cdots (X) \subseteq F_{n-1} \cdots (X) \cup \{0\}$, where the first inclusion follows by definition of H_n and the second follows inductively. Case 2 follows because

$$H_{n}^\sigma(F_{n-1}) \cdots (X) \subseteq H_{n}^\sigma_0(F_{n-1}) \cdots (X).$$

Case 3 follows because

$$H_{n}^\sigma(F_{n-1}) \cdots (X) \subseteq H_{n}^\sigma_0(F_{n-1}) \cdots (X) \cup \{0\}.$$

The cases for an arbitrary term α are as follows. Case 0 is trivial. Suppose $F_n(F_{n-1}) \cdots (X) \subseteq F_{n-1} \cdots (X) \cup \{0\}$ and $G_n(F_{n-1}) \cdots (X) \subseteq F_{n-1} \cdots (X) \cup \{0\}$. Then if $\lambda \in (F_n \circ G_n)(F_{n-1}) \cdots (X)$ then $\lambda \in G_n(F_{n-1}) \cdots (X) \cup \{0\}$ so $\lambda \in F_{n-1} \cdots (X) \cup \{0\}$. Case 1 follows. Case 2 has already been proved. For case 3, inductively $H_{n\kappa + \eta}(F_{n-1}) \cdots (X) \subseteq F_{n-1} \cdots (X) \cup \{0\}$. The same induction as given above for H_n shows that $H_{n\kappa + \eta}^\sigma(F_{n-1}) \cdots (X) \subseteq F_{n-1} \cdots (X) \cup \{0\}$, except that in case 1, $H_{n\kappa + \eta}(H_{n}^\tau(F_{n-1})) \cdots (X) \subseteq H_{n}^\tau_{n\kappa + \eta}(F_{n-1}) \cdots (X) \cup \{0\}$ follows inductively. For case 4, $H_{n}(F_{n-1}) \cdots (X) \subseteq F_{n-1} \cdots (X)$ by definition of F_n. For case 5, $H_{n+1}(H_n)(F_{n-1}) \cdots (X) \cup \{0\} \subseteq H_n(F_{n-1}) \cdots (X) \cup \{0\} \subseteq F_{n-1} \cdots (X) \cup \{0\}$, where the first inclusion follows inductively.

This concludes the proof of lemma 12. \hfill \Box
Lemma 13. For \(n \geq 1 \) and a term \(\alpha \) let \(F_n = H_{n\alpha} \). Suppose that \(\lambda \in F_{n-1} \cdots (F_1)(X) \) and \(F_n(F_{n-1}) \cdots (F_1)(X) \cap \lambda \) is stationary. Then \(\lambda \in F_n(F_{n-1}) \cdots (F_1)(X) \).

Proof. The claim is first proved for a scheme \(\sigma \), by induction on \(\sigma \), with cases as follows.

Case 0 is trivial.

For case 1, from the hypothesis that \(H_{n\sigma}(F_{n-1}) \cdots (X) \cap \lambda \) is stationary and lemma 12, \(H_{n\tau}(F_{n-1}) \cdots (X) \cap \lambda \) is stationary. Inductively, \(\lambda \in H_{n\tau}(F_{n-1}) \cdots (X) \). By the definition of \(H_n \), \(\lambda \in H_n(H_{n\tau}(F_{n-1})) \cdots (X) = H_{n\sigma}(F_{n-1}) \cdots (X) \).

For case 2, from the hypothesis that \(H_{n\sigma}(F_{n-1}) \cdots (X) \cap \lambda \) is stationary, \(H_{n\sigma}(F_{n-1}) \cdots (X) \cap \lambda \) is stationary for all \(\xi \). Inductively, \(\lambda \in H_{n\sigma}(F_{n-1}) \cdots (X) \).

For case 3, from the hypothesis that \(H_{n\sigma}(F_{n-1}) \cdots (X) \cap \lambda \) is stationary, \(H_{n\sigma}(F_{n-1}) \cdots (X) \cap \lambda \) is stationary for all \(\xi \). (To see this, note that \((\Delta_{\xi<\kappa}X_\xi) \cap \lambda = \Delta_{\xi<\kappa}(X_\xi \cap \lambda) \)). Inductively, \(\lambda \in H_{n\sigma}(F_{n-1}) \cdots (X) \) for all \(\xi < \lambda \). It follows that \(\lambda \in H_{n\sigma}(F_{n-1}) \cdots (X) \).

The cases for an arbitrary term \(\alpha \) are as follows.

Case 0 is trivial.

For case 1, let \(Y_i = (H_{n_\kappa+\eta_i}, \sigma_i \circ \cdots \circ H_{n_\kappa+\eta_k}, \sigma_k)(F_{n-1} \cdots (X) \cap \lambda \). Using lemma 12, successively \(Y_1 \cap \lambda \), \(Y_2 \cap \lambda \), \(\ldots \), \(Y_k \cap \lambda \) are stationary. Using the induction hypothesis, successively \(\lambda \in Y_k \), \(\lambda \in Y_{k-1} \), \(\ldots \), \(\lambda \in Y_1 \).

Case 2 has already been proved.

For case 3, the same induction as given above for \(H_n \) shows that \(\lambda \in H_{n\sigma}(F_{n-1}) \cdots (X) \), except that in case 1, \(\lambda \in H_{n_\kappa+\eta}(H_{n_\tau+\eta}(F_{n-1})) \cdots (X) \) follows inductively.

For case 4, by hypothesis \(H_{n+1}(H_n)(F_{n-1}) \cdots (X) \cap \lambda \) is stationary. By lemma 12 \(H_n(F_{n-1}) \cdots (X) \cap \lambda \) is stationary. Inductively \(\lambda \in H_n(F_{n-1}) \cdots (X) \).

The claim follows.

Case 5 is similar to case 4.

This concludes the proof of theorem 13.

Theorem 14. If \(\alpha' \leq \alpha \) then \(H_{n\alpha'} \supseteq_t H_{n\alpha} \).

Proof. If \(\alpha' = \alpha \) then cases 0 and 2 of the induction follows by lemma 10, and in the other cases the ordinals of the subterms \(\tau \) are all equal, so inductively the \(H_{n\tau} \) are equal mod \(\equiv_t \), so \(H_{n\alpha'} \equiv_t H_{n\alpha} \).

Thus, \(\alpha' < \alpha \) may be assumed. Write \(\alpha \) in CNF as usual, and write \(\alpha' \) as \(\kappa^{+\eta_k'} \cdot \sigma_k' + \cdots + \kappa^{+\eta_1'} \cdot \sigma_1' \). The cases of the induction are as follows.
Case 0 is vacuous.

In case 1, leading equal terms may be removed from α' and α. The rest of the argument is similar to that for case 3.

Case 2 follows by lemma 10.

In case 3, if $\alpha' \leq \kappa + \eta \cdot \sigma'$ for some $\eta < \kappa$, let $\sigma_1 = \sigma \leq \sigma_1$. Then inductively $H_{n\alpha'} \supseteq \tau \cdot H_{n\kappa + \eta \cdot \sigma_1}$, and $H_{n\kappa + \eta \cdot \sigma_1} \supseteq \tau \cdot H_{n\kappa + \eta \cdot \sigma}$. Otherwise, the first term of the CNF for α' is $\kappa + \eta \cdot \sigma'$ where $\sigma = \sigma' + 1$. Letting $\sigma_1 = \sigma \leq \sigma'$, $H_{n\alpha'} \supseteq \tau \cdot H_{n\kappa + \eta \cdot \sigma_1} \circ H_{n\kappa + \eta \cdot \sigma_1}$. The right side equals $H_{\sigma \leq \sigma_1}$, which equals $H_{n\alpha'}$.

Case 4 follows because $H_{\sigma} \supseteq \tau \cdot H_{\sigma}$ for any scheme σ. This is shown in [3].

For case 5, if $\alpha' \leq \kappa + \eta$ for some $\eta _1 < \eta$, let η_1 be a term with ordinal η_1. Then inductively $H_{n\alpha'} \supseteq \tau \cdot H_{n\kappa + \eta}$, and $H_{n+1, \eta} \supseteq \tau \cdot H_{n+1, \eta}$, whence $H_{n+1, \eta} \supseteq \tau \cdot H_{n\kappa + \eta}$. Otherwise, the first term of the CNF for α' is $\kappa + \eta \cdot \sigma'$ where $\eta = \eta' + 1$; let η_1 be a term with ordinal η_1 and let σ be σ' with one position added. Suppose

$$H_{\alpha'} \supseteq \tau \cdot H^{\ast}_{n\kappa + \eta}$$

for any scheme σ. Then $H_{n\alpha'} \supseteq \tau \cdot H^{\sigma}_{n\kappa + \eta} \supseteq \tau \cdot H^{\ast}_{n\kappa + \eta} = H_{n+1}(H_{n+1, \eta}(H(H_{\eta}))) = H_{n+1, \eta}(H(H_{\eta})) = H_{n+1, \eta} \supseteq H_{\alpha'}$.

For the proof of (1), for ease of notation let F_{η} denote $H_{n\kappa + \eta}$. Suppose $\lambda \in F^\ast_{\eta}(F_{\eta-1} \cdots (X))$; note that $\lambda \in F_{\eta-1} \cdots (X)$ follows. Given σ, suppose $\lambda \notin T_{\sigma}$. By definition of F^\ast_{η}, $F_{\eta}^{\sigma} F_{\eta-1} \cdots (X \mid \lambda)$ By lemma 3 of [5], $F_{\eta}^{\sigma} \eta_1 F_{\eta-1} \cdots (X \mid \lambda) = F_{\eta}^{\sigma} F_{\eta-1} \cdots (X \mid \lambda)$ is stationary. The claim follows by lemma 13.

This concludes the proof of theorem 14.

It follows that if $H_{1\alpha}(I_{\kappa})$ is stationary then $\rho_R(H_{1\alpha}(I_{\kappa})) \geq \alpha$. The proof given above is simplified from that given in [5], indeed an omission is repaired. In addition, it permits attempting to proceed further by considering BV terms.

Some remarks on extending to BV will be given. Let BV_1 be the subsystem of BV where the first argument of ϕ must be 1, and let BV_{1c} be the subsystem where as well the second argument must be a CNF term. It is easily seen that the closure ordinal of BV_1 is $\phi(2,0)$, and that of BV_{1c} is $\phi(1,0)$. To extend the definition of $H_{1\alpha}$ to BV_{1c}, some additional functionals are defined. As usual, the first subscript denotes the level in the L_{κ} hierarchy. Functionals $F^\alpha: \times_{n=1}^{\kappa} L_n \mapsto \times_{n=1}^{\kappa} L_n$; expressions $F^\alpha(\vec{X})$, $F_n(\vec{X})$, etc., will be used; the component of F^α mapping \vec{X} to L_n is denoted F_{n+1}. The operations of \circ, \cap, and Δ are defined pointwise, and F^{σ} for a scheme σ is defined by the usual recursion.

P^0_n equals $\cap_{i<\omega} H_{n,\kappa+1}^{\sigma}$.

Suppose $F_n \in \mathcal{L}_n$. Let $G_{n0} = H_n \circ F_1$, $G_{n,i+1} = G_{n+1,i}(H_n)$, and $G_{n\omega} = \cap_{i<\omega} G_{ni}$. Let $P_{n+1}(\vec{F}) = G_{n0}$. P_2 is the “next fixed point” functional; the intent is that $P_2(\vec{H}_\gamma) = H_{1,\phi(1,\gamma)}$.

-P_α is defined by recursion on α, with cases as follows.

Case 0: $P_{n0} = \text{Id}$

Case 1: $P_{\kappa^+ + 1} = H_{n+1}(P_n)$

Case 2: $P_{\kappa^+ + \eta} = H_{n+1,\eta}(P_n)$

The following case is added to the definition of $H_{n\alpha}$.

Case 6: $H_{n,\phi(1,\gamma)}(1, \gamma) = P_{n+1,\gamma}(P_0)$

This definition improves on [5], where $H_{1\alpha}$ is defined for $\alpha < \phi(1, \kappa^+)$.

Theorem 15. If $\alpha' \leq \alpha$ then $H_{n\alpha'} \supseteq t H_{n\alpha}$.

Proof. Only an outline will be given. Let $X \subseteq Y$ denote $X \subseteq Y \cup \{0\}$, and recursively for the relation on \mathcal{L}_n. It may be verified that $P_{n0} \subseteq \text{Id}$, and $P_{n+1}(\vec{F}) \subseteq F_n$ for $n > 1$. It follows inductively that $P_{n+1}^\gamma(\vec{F}) \subseteq F_n$ for $n \geq 1$ and CNF γ. Case 6 of lemma 12 then follows, proving the lemma for BV_{1c} terms. Say that F_n is S-closed if $\lambda \in F_n(F_{n-1}) \cdots (F_1)(X)$ whenever $\lambda \in F_{n-1} \cdots (F_1)(X)$ and $F_n(F_{n-1}) \cdots (F_1)(X) \cap \lambda$ is stationary. One verifies that P_{n0}^γ is S-closed, if F_n is S-closed for all n then $P_{n+1}(\vec{F})$ is S-closed for all n, and the same holds for P_{n+1}^γ for CNF γ. Case 6 of lemma 13 then follows, proving the lemma for BV_{1c} terms. Next, since $P_{n+1}(H_{n,\phi(1,\gamma)})/\subseteqeq H_{n,\phi(1,\gamma)}$, it follows by induction on γ as in theorem 14 that if $\gamma' \leq \gamma$ then $H_{n,\phi(1,\gamma')}/\subseteqeq H_{n,\phi(1,\gamma)}$. Now, suppose $\alpha = \phi(1,\gamma)$ and $\alpha' < \alpha$. If $\alpha' < \phi(1,\gamma_1)$ for some $\gamma_1 < \gamma$ then $H_{n\alpha'} \supseteq t H_{n,\phi(1,\gamma_1)} \supseteq t H_{n,\phi(1,\gamma)}$. Otherwise $\gamma = \gamma_1 + 1$ for some γ_1. In this case, choosing γ_1 and letting G_{ni} be as in the definition of P, for some i, $H_{n\alpha'} \supseteq t G_{ni} \supseteq t H_{n\alpha}$.

Improvements to theorem 15 are left to further research.

7. Enforceability

Enforceability of $H^\sigma(I_{n\kappa})$ for a scheme σ was proved in [1]. Recalling some facts from [2] and [5], subsets of $V\kappa$ are called classes, and various standard methods can be used to code sequences of classes as a single class, etc. A scheme can be
coded as a class; the predicate “X is a scheme” is Δ^1_0. x, y, etc. will be used to denote points of the well-order.

Assuming κ is 1-inaccessible, an element $F_n \in \mathcal{L}_n$ for $n > 0$ will be coded as the class in V_κ, $\{ \langle \lambda, F_n \downharpoonright \lambda \rangle : \lambda \in \text{In}_\kappa \}$. With this coding, the predicate $G_n = F_{n+1}(F_n)$ is Δ^1_0.

Let H_{nx} denote the value of H_{σ}^n at stage x of the iteration. The class of triples $\langle x, \lambda, H_{nx} \downharpoonright \lambda \rangle$ may serve as a witness that $Y = H_{\sigma}^n$. The predicate “W is the witness to $Y = H_{\sigma}^n$” is Δ^1_0.

A term α may be given as a class coding the sequence of classes $\langle t, \sigma_1, \ldots, \sigma_k \rangle$ where T is a hereditarily finite set coding the tree of the term, and $\sigma_1, \ldots, \sigma_k$ are (codes for) the schemes at the leaves in order.

Theorem 16. There is a Π^1_1 parameter-free sentence Φ, which holds in V_κ for a 1-inaccessible κ iff “for all BV_{1c} terms α, $H_{1\alpha}(\text{In}_\kappa)$ is stationary”.

Proof Sketch. The claim is first shown for CNF terms. A witness consists of a witness W_t for t, and witnesses W_i for each W_t. W_t is the class of triples $\langle \nu, \lambda, \bar{H}_\nu \downharpoonright \lambda \rangle$. By considering the cases other than case 2, it may be seen that the predicate “W_t witnesses that $\bar{Y} = \bar{H}_\alpha$” is Δ^1_0. It has already been noted that “W_t witnesses $\bar{H}_\nu(\bar{H})$ is Δ^1_0. The predicate “W witnesses that $\bar{Y} = \bar{H}_\alpha(\bar{H})$” can be used in a well known way to construct Φ. To extend the argument to BV_{1c} terms, add a witness for each case 6 node, and a Π^1_0 subformula stating that “W witnesses $\bar{y} = \bar{F}_\gamma$; finally adjust the Φ to incorporate these.

As in [5], let \mathcal{E}_0 be the collection of Π^1_1-enforceable subsets of κ, and for an integer $n > 0$, inductively let \mathcal{E}_n be the elements $F_n \in \mathcal{L}_n$ such that $F[\mathcal{E}_{n-1}] \subseteq \mathcal{E}_{n-1}$. $\text{In}_\kappa \in \mathcal{E}_0$, and \mathcal{E}_0 is closed under \cap and Δ (see [2] for some details). For $n > 0$, $H_n \in \mathcal{E}_n$, and \mathcal{E}_n is closed under \cap, \cap, and Δ (see [5] for some details).

Theorem 17. If κ is weakly compact then $\models_{V_\kappa} \Phi$. Thus, $\rho_R(\kappa) > \phi(1, \epsilon_0\kappa)$, and $\{ \lambda \in \text{In}_\kappa : \rho_R(\lambda) > \phi(1, \epsilon_0\lambda) \}$ is a Π^1_1-enforceable subset of κ.

Proof Sketch. In fact, $H_{n\alpha} \in \mathcal{E}_n$, as may be by induction. The cases for CNF are as follows. Case 0 is immediate. Case 1 follows by closure under composition. Case 2 follows by induction on σ; case 3 does also. Case 4 is immediate. Case 5 follows by induction on α. For BV_{1c} terms, it is easy to check that $P^0_n \in \mathcal{E}_n$; and if $F_n \in \mathcal{E}_n$ for all n then $P_n(F) \in \mathcal{E}_n$. By induction on γ, $P_{n\gamma} \in \mathcal{E}_n$ for CNF γ. The theorem follows readily.

The following theorem is needed below.

Theorem 18. Suppose $\theta < \kappa$ and α_ξ for $\xi < \theta$ is a sequence of BV_{1c} terms; and α is a term. Suppose α_ξ is ascending and $\alpha = \sup \xi \alpha_\xi$. Then
$H_1\alpha \equiv \ell \cap \xi H_1\alpha_\xi$. Suppose the sequence of terms is α_ξ for $\xi < \kappa$. Then $H_1\alpha \equiv \ell \ Bt_\xi H_1\alpha_\xi$.

Proof. The proof for CNF terms is similar to that of 7 and is left to the reader. For BV_{1c} terms, the proof for case 6 is also similar, except only $\beta = 1$ need be considered; this is left to the reader also.

8. New Axioms

The results of this paper suggest a two-step method for proposing new axioms for set theory.

Step 1. Construct a sequence of subsets of κ, such that if they are all stationary then they form a strictly ascending chain in the order $<_R$.

Step 2. Postulate that the subsets are all stationary.

Step 1 is a work in progress, which as of this paper has reached rank $\phi(1, \epsilon_0)$. Even this admittedly small a value has required refining methods developed by the author in a series of papers.

By theorem 28 of [5], axiom G may be stated as, $H_1\sigma (Inac)$ is a stationary class for all class schemes σ. Let M_{κ^+} be another name for axiom G, as it states that Ord is Ord$^{\kappa^+}$-Mahlo.

The author proposes that the axiom $M_{\phi(1, \epsilon_0)}$ be added to BGC. Class terms are readily defined. The axiom states that $H_1\alpha (Inac)$ is a stationary class for all class BV_1 terms α.

Axiom $M_{\phi(1, \epsilon_0)}$ seems a mild enough generalization of axiom M_{κ^+} that it is a reasonable candidate. A more detailed discussion is clearly of interest, though. As will be seen, the axiom can be deduced from more specific ones which are easier to justify, along the lines of axiom G.

To specify these axioms, let S_0 be the classes $H_1\alpha (Inac)$ which are stationary. and for $n > 0$, inductively let S_n be those H_n such that $H_n[\ell S_{n-1}] \subseteq S_{n-1}$. The following theorem will be useful.

The axioms for CNF terms as follows.

1. $Inac \in S_0$. This has already been justified.
2. If $H_1\alpha (Inac)$ is nonempty then it is stationary. This axiom is redundant, but useful for justifying subsequent axioms. It is a statement of a principle which is a consequence of the principle of collecting the universe. It is a generalization of axiom G, and the justification of axiom G can be generalized to justify it. Note that axiom 1 can be weakened, to “Inac is nonempty”.

3. If $H_{1\alpha}(\text{Inac})$ is stationary then $H(H_{1,\alpha}(\text{Inac}))$ is stationary. This can be seen as collecting the universe, then applying axiom 2.

4. If η is a limit ordinal, $\alpha \xi$ for $\xi < \eta$ is an ascending chain with limit α, and $H_{1\alpha\xi}(\text{Inac})$ is stationary for all $\xi < \eta$, then $H_{1\alpha}(\text{Inac})$ is stationary. This follows by the principle of collecting the universe using arguments as in Section 2, theorem 18, and axiom 2.

5. If $\alpha \xi$ for $\xi < \text{Ord}$ is an ascending chain with limit α, and $H_{1\alpha\xi}(\text{Inac})$ is stationary for all ξ, then $H_{1\alpha}(\text{Inac})$ is stationary.

6. $H_{n\alpha} \in S_n$. Axioms 4 and 5 follow for S_n for $n \geq 2$, and closure under composition is clear. Closure under iteration through schemes follows. Closure under $*$ may be postulated as an application of collecting the universe.

Axiom M_ε follows from the above axioms, by induction on α, as the reader may verify. To justify axiom $M_{\phi(1,\varepsilon_0)}$, note that the above axioms may be justified for BV$_{1c}$ terms (indeed any reasonable scheme term system). Arguments like those already given justify postulating that $P_0^1 \in S_1$, if $H_{n\alpha} \in S_n$ for all n then $P_{n+1,\alpha}(\tilde{H}_\alpha)(\in S_n$ for all n.

9. Mitchell Order

let $\rho(\kappa)$ denote the Mahlo rank of κ; and let $o(\kappa)$ denote the Mitchell order. Let κ_c denote the least measurable cardinal κ such that $o(\kappa) > \rho(\kappa)$. Recall the following theorem from [4].

Theorem 19. Suppose κ_c does not exist. Then for a cardinal κ, $o(\kappa) < \kappa^{++}$.

Proof. The proof is essentially unchanged from the proof of theorem 3 of [4]. For step (2) a core model is unnecessary; the model $L[F]$ of [7] suffices. ∎

Theorem 20. $o(\kappa_c) = \rho(\kappa_c) + 1$.

Proof. For an ultrafilter U on the cardinal κ, and a function $f : \kappa \mapsto V$, let $[f]_U$ denote the element of the transitive collapse M of the ultrapower V^κ/U, corresponding to the function f. Suppose U is normal. By standard arguments $[o \upharpoonright \kappa]_U$ equals $o(\kappa)^M$ and $[\rho \upharpoonright \kappa]_U$ equals $\rho(\kappa)^M$. Also, since $\text{Pow}(\kappa)^M = \text{Pow}(\kappa)$, the stationary subsets of κ are the same in M as in V, $\rho(S)^M = \rho(S)$ for any stationary subset $S \subseteq \kappa$, and $\rho(\kappa)^M = \rho(\kappa)$. Finally, for any measurable (indeed weakly compact) cardinal κ, $\rho(\kappa)$ is a limit ordinal.
\(\kappa_c\) cannot be the smallest measurable cardinal \(\kappa\), since \(o(\kappa) = 1\) but \(\rho(\kappa)\) is a limit ordinal. For larger \(\kappa\), inductively \(o(\kappa)^M \leq \rho(\kappa)^M\). But \(\rho(\kappa)^M = \rho(\kappa)\), and it is well-known that \(o(\kappa)^M = o(U)\), and so \(o(U) \leq \rho(\kappa)\). \(\square\)

It follows that there is a normal ultrafilter \(U\) in \(\kappa_c\) such that \(o(U) = \rho(\kappa)\). Let \(S = \{\lambda : o(\lambda) = \rho(\lambda)\}\). Since \(o(U) = \rho(\kappa)\), \(o(\kappa)^M = \rho(\kappa)^M\); and so \(S \in U\). Clearly it is of interest what can be said about \(\rho(S)\).

The results of Section 5 yield the following.

Theorem 21. If \(o(\kappa) < \Gamma_{0k}\) then \(o(\kappa) \leq \rho(\kappa)\).

Proof. This follows by theorems 4-8 and theorem 14 of [5]. \(\square\)

References

