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Abstract: In this paper, we show that a Simpson’s type second derivative
method (SSDM) can be adapted to cope with the integration of stiff systems
in ordinary differential equations (ODEs). This is achieved by combining the
SSDM with an additional method and implementing them as a block method.
The block method is shown to be A-stable and of order 6. Numerical results
produced by the block method show that the method is competitive with ex-
isting ones in the literature.
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1. Introduction

According to Lambert [20], if the Simpson’s Rule is used to evaluate
∫ xn+2

xn
f(x)dx,

then it is successfully applied on the sub-intervals [x0, x2], [x2, x4] . . . , [xN−2, xN ]
for N > 0, the error in integration over the whole interval is simply the sum
of the errors over each sub-interval. In contrast, if the Simpson’s Rule is used
to integrate an initial value problem (IVP), then it is successively applied on
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the sub-intervals [x0, x2], [x1, x3] . . . , [xN−2, xN ] which overlap and the accumu-
lation of error is more complicated. Hence, the Simpson’s Rule is an excellent
method for quadrature, but a poor method for integrating IVPs. In this paper
we show that a SSDM can be adapted using the logic behind the Simpson’s Rule
for quadrature to cope with the integration of stiff systems in ODEs. This is
achieved by combining the SSDM with an additional method and implementing
them as a block method. Thus, we consider the first order differential equation

y′ = f(x, y), y(a) = y0 , x ǫ [a, b] (1)

where f : ℜ × ℜm → ℜm, y, y0 ǫ ℜm, f satisfies a Lipschitz condition (see
Henrici [16]), and the Jacobian (∂f

∂y
) whose eigenvalues have negative real parts

varies slowly ([17]).

We recall that (1) is efficiently solved by A-stable methods and for high
accuracy, higher order methods are preferable. However, for linear multistep
methods (LMMs), the use of high order LMMs for (1) is restricted by the
second Dahlquist [8] barrier theorem which stated that the order of an A-
stable linear multistep method cannot exceed 2. Several methods have been
proposed to overcome this barrier theorem, for instance, hybrid methods (see
Gear [11],Gragg and Stetter [13], Butcher [5], Lambert [21], and Kohfeld and
Thompson [19]), the second derivative methods (see Enright[9], Gupta [14],
and Hairer and Wanner [15], and exponentially fitted methods (see Jackson
and Kenue [17], Cash [6]).

In what follows, we derive a continuous SSDM through interpolation and
collocation ( see Lie and Norsett [22], Atkinson [2], Onumanyi et al [24], and
Gladwell and Sayers [12]) which is used to obtain the main discrete SSDM and
one additional method for solving (1). We note that this concept of combin-
ing the main and additional methods for solving (1) is due to Brugnano and
Trigiante [4]. We emphasize that the main discrete SSDM and one additional
method generated from the continuous representation are combined and used as
a block method to simultaneously produce approximations {yn+1, yn+2} to the
exact solutions {y(xn+1), y(xn+2)}, where the set of points xn = a+ nh, 0(1)N
belong to the partition

πN : a = x0 < x1 < x2 < . . . < xN = b

h = b−a
N

is the constant step-size.

In order to apply the block method at the next block to obtain yn+3, yn+4,
the only necessary starting value is yn+2, and the loss of accuracy in yn+2, does
not affect subsequent points, thus the order of the algorithm is maintained.
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It is unnecessary to make a function evaluation at the initial part of the new
block. Thus, at all blocks except the first, the first function evaluation is al-
ready available from the previous block. The method preserves the Runge-kutta
traditional advantage of being self-starting and is more accurate since it is im-
plemented as a block method (see Milne [23], Sarafyan [26], Rosser [25],and
Shampine and Watts [27]).

The paper is organized as follows. In Section 2, we obtain a continuous
representation u(x) for the exact solution y(x) which is used to generate the
main discrete SSDM and one additional method for solving (1). The analysis
and implementation of the method are discussed in Section 3. Numerical ex-
amples are given in Section 4 to show the efficiency of the method. Finally, the
conclusion of the paper is discussed in Section 5.

2. Development of Method

In this section, our objective is to derive the main SSDM and an additional
method.

The main method is of the form

yn+2 − yn = h

2
∑

j=0

βjfn+j + h2
2

∑

j=0

γjgn+j (2)

where βj and γj are unknown constants. We note that yn+j is the numerical
approximation to the analytical solution y(xn+j), fn+j = f(xn+j, y(xn+j)),
j = 0, 1, 2, and

gn+j =
df(x, y(x))

dx
|
xn+j
yn+j

, j = 0, 1, 2.

The additional method is of the form

yn+1 − yn = h

2
∑

j=0

βjfn+j + h2
2

∑

j=0

γjgn+j (3)

Continuous approximation. In order to specify (2) and (3), we seek a
continuous representation of the SSDM to approximate the exact solution y(x).
We assume that the solution of (1) is locally represented in the range [xn, xn+2]
by the interpolating function

u(x) =
6

∑

j=0

ℓjx
j (4)
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where ℓj are unknown coefficients to be determined. We then construct our
continuous SSDM by imposing the following conditions.

• The interpolating function (4) coincides with the analytical solution at
the point xn

• The function (4) satisfies the differential equation (1) at the points xn+j , j =
0, 1, 2

• The second derivative of (4) coincides with the second derivative of the
analytical solution at the points xn+j, j = 0, 1, 2

These conditions produce the following set of 7 equations

u (xn) = yn, (5)

u′ (xn+j) = fn+j, j = 0, 1, 2 (6)

u′′ (xn+j) = gn+j , j = 0, 1, 2, (7)

which is solved to obtain ℓj. Our continuous SDAM is constructed by substitut-
ing the values of ℓj into equation (4). After some manipulation, our continuous
approximation is expressed in the form

u(x) = yn + h

2
∑

j=0

βj(x)fn+j + h2
2

∑

j=0

γj(x)gn+j , (8)

where βj(x) and γj(x) are continuous coefficients. Thus, evaluating (8) at
x = {xn+2, xn+1}, (2) and (3) are specified as follows.

yn+2 = yn +
h

15
(7fn + 16fn+1 + 7fn+2) +

h2

15
(gn − gn+2), (9)

yn+1 = yn+
h

240
(101fn+128fn+1+11fn+2)+

h2

240
(13gn−40gn+1−3gn+2). (10)
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3. Block Method

In the spirit of Baker and Keech [3], a block-by-block method is a method for
computing vectors Y0, Y1, . . . in sequence. Let the ν-vector (ν is the number of
points within the block) Yµ, Fµ, and Gµ, for n = mν, m = 0, 1, . . . be given as
Yµ = (yn+1, . . . , yn+ν)

T , Fµ = (fn+1, . . . , fn+ν)
T , Gµ = (gn+1, . . . , gn+ν)

T , then
the l-block ν-point methods for (1) are given by

Yµ =
k

∑

i=1

A(i)Yµ−i + h
k

∑

i=0

B(i)Fµ−i + h2
k

∑

i=0

C(i)Gµ−i (11)

where A(i), B(i), C(i), i = 0, . . . , k are ν by ν matrices (see Fatunla[10]).

Let the theoretical solution of (1) be represented by

Zµ =











y(xn+1)
y(xn+2)

...
y(xn+ν)











Definition 3.1. The local truncation error (LTE) of the block method
(11) is given by the vector Eµ as follows:

Eµ = Zµ −

k
∑

i=1

A(i)Zµ−i + h

k
∑

i=0

B(i)Zµ−i + h2
k

∑

i=0

C(i)Zµ−i (12)

Definition 3.2. The block method (11) has error order p ≥ 1 provided
there exists a constant C such that the LTE Eµ satisfies

‖Eµ‖ = Chp+1 +O(hp+2),

where ‖ · ‖ is the maximum norm.

Definition 3.3. The block method (11) is zero stable provided the roots
Rj , j = 1, . . . , k of the first characteristic polynomial ρ(R) specified by

ρ(R) = det[
k

∑

i=0

A(i)Rk−i] = 0, A(0) = −I (13)

satisfies |Rj | ≤ 1, j = 1, . . . , k, and for those roots with |Rj | = 1, the multiplicity
does not exceed 1.
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Definition 3.4. The block method (11) is said to be consistent if it has
order at least one.

Block SSDM (ν = 2, l = 1. The methods (9) and (10) can be rearranged
in order to assume the form 13) as follows.

A(0)Yµ = A(1)Yµ−1 + h[B(0)Fµ +B(1)Fµ−1] + h2[C(0)Gµ + C(1)Gµ−1], (14)

where:
Yµ = (yn+1, yn+2)

T , Yµ−1 = (yn−1, yn)
T ,

Fµ = (fn+1, fn+2)
T , Fµ−1 = (fn−1, fn)

T ,

Gµ = (gn+1, gn+2)
T , Gµ−1 = (gn−1, gn)

T ,

for µ = 1, . . . and n = 0, 2, . . . , N − 2, and the matrices A(0), A(1), B(0),
B(1),C(0), and C(1) are matrices of dimension 2 defined as follows: A(0) is
an identity matrix of dimension 2,

A(1) =

(

0 1
0 1

)

, B(0) =

(

8/15 11/240
16/15 7/15

)

, B(1) =

(

0 101/240
0 7/15

)

,

C(0) =

(

−1/6 −1/80
0 −1/15

)

, C(1) =

(

0 13/240
0 1/15

)

Local truncation error. Following Fatunla [10] and Lambert [21] we
define the local truncation error associated with normalized form of (14) to be
the linear difference operator

L[Z(x);h] =

k
∑

j=0

{αjZ(x+ jh) − hZ ′βj(x+ jh) − h2γjZ
′′(x+ jh)} (15)

Assuming that Z(x) is sufficiently differentiable, we can expand the terms
in (15) as a Taylor series about the point x to obtain the expression

L[Z(x);h] = C0Z(x) + C1hZ
′(x) + . . . +Cqh

qZ(q)(x) + . . . , (16)

where the constant coefficients Cq , q = 0, 1, . . . are given as follows:

C0 =
k

∑

j=0

αj ,

C1 =
k

∑

j=1

jαj −
k

∑

j=0

βj ,
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C2 =
1

2

k
∑

j=1

j2αj −

k
∑

j=1

jβj −

k
∑

j=0

γj ,

...

Cq =
1

q!
[

k
∑

j=1

jqαj − q

k
∑

j=1

jq−1βj − q(q − 1)

k
∑

j=1

jq−2γj ].

According to Henrici [16], we say that the method (14) has order p if

C0 = C1 = . . . = Cp = 0, Cp+1 6= 0.

Therefore, Cp+1 is the error constant (EC) and Cp+1h
p+1Z(p+1)(xn) the prin-

cipal local truncation error at the point xn.
Order and error constant. The block method (14) has order and error

constant given by the vectors p = (6, 6)T and C6 = (1/9450, 1/4725)T .
Zero-stability. It is worth noting that zero-stability is concerned with the

stability of the difference system in the limit as h tends to zero. Thus, as h → 0,
the method (14) tends to the difference system

A0Yµ −A1Yµ−1 = 0

whose first characteristic polynomial ρ(R) is given by

ρ(R) = det(RA0 −A1) = R(R− 1). (17)

Following Fatunla[10], the block method (14) is zero-stable, since from (17),
ρ(R) = 0 satisfy |Rj | ≤ 1, j = 1, . . . , k, and for those roots with |Rj | = 1, the
multiplicity does not exceed 1. The block method (14) is consistent as it has
order p > 1. According to Henrici[16], we can safely assert the convergence of
the block method (14).

Linear-stability. A-stability is discussed in the spirit of [4], [15] where we
consider the usual test equations

y′ = λy, y′′ = λ2y

which are applied to (14) to yield

Yµ = M(q)Yµ−1 , q = λh, (18)

where the matrix M(q) is given by

M(q) = (A(0) − qB(0) − q2C(0))−1(A(1) + qB(1) + q2C(1)),



626 R.K. Sahi, S.N. Jator, N.A. Khan

and A(i), B(i), C(i), i = 0, 1 are matrices.
We obtain the property of A-stability from (18) , which requires that for all

q ǫ C− and Re(q) < 0, M(q) must have a dominant eigenvalue λ2 such that

|λ2| < 1.

Our calculations show that the matrix M(q) has eigenvalues {λ1, λ2} =
{0, λ2}, where the dominant eigenvalue λ2 is a function of q given by

λ2 =
90 + 90q + 39q2 + 9q3 + q4

90− 90q + 39q2 − 9q3 + q4
(19)

It is obvious from (19) that for Re(q) < 0, |λ2| < 1.
Hence, the block method (14) is A-stable since its region of absolute stability

contains the left half-complex plane {q ǫ C|Re(q) < 0} (see the unshaded region
in Figure 1). Therefore, there is no restriction on λh, which makes (14) a viable
candidate for stiff problems.

Re

Im
Absolute Stability Region for HBDFC4

Figure 1: Stability region for the block SSMD

Implementation. Our method is implemented more efficiently by combin-
ing methods (9) and (10) as simultaneous integrators in the form (14) for IVPs
without requiring starting values and predictors. We proceed by explicitly ob-
taining initial conditions at xn+2, n = 0, 2, . . . , N−2 using the computed values
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u(xn+2) = yn+2 over sub-intervals [x0, x2], . . . , [xN−2, xN ]. For instance, n = 0,
µ = 1, (y1, y2)

T are simultaneously obtained over the sub-interval [x0, x2], as y0
is known from the IVP, for n = 2, µ = 2, (y3, y4)

T are simultaneously obtained
over the sub-interval [x2, x4], as y2 is known from the previous block, and so
on. Hence, the sub-intervals do not over-lap and the solutions obtained in this
manner are more accurate than those obtained in the conventional way. We
note that for linear problems, we solve (1) directly from the start with Gaus-
sian elimination using partial pivoting and for nonlinear problems, we use the
modified Newton-Raphson method.

4. Numerical Examples

In this section, we give four numerical examples to illustrate the accuracy of
the method. We find absolute and relative errors of the approximate solution
on the partition πN as |y− y(x)| and (|y− y(x)|/(1 + |y(x)|)) respectively. The
rate of convergence is calculated using the formula RC = log2(E

2h/Eh), where
E2h is the absolute maximum error |y(x)− y| using the step size 2h and Eh is
the absolute maximum error |y(x)− y| using the step size h. All computations
were carried out using our written Mathematica code in Mathematica 8.0.

Example 4.1. We consider the following IVP which was also solved by
Cash [6] and Jackson and Kenue [17] on the range 0 ≤ x ≤ 1.

y′ = −y + 95z, y(0) = 1,

z′ = −y − 97z, z(0) = 1.

Exact : y(x) =
95

47
e−2x −

48

47
e−96x , z(x) =

48

47
e−96x −

1

47
e−2x

The errors in the solution were obtained at x = 1 using our method for
fixed step-sizes as shown in table 1. Similar results were obtained in [6] and
[17] and are reproduced in table 1. It is seen that our method is more accurate
than those in [6] and [17]. This is interesting to note that the Simpson’s Rule
which is a bad method for IVPs has been adapted via SSDM to be competitive
with these methods in [6] and [17].

Example 4.2. As our second test example, we solve the given linear
system on the range 0 ≤ x ≤ 1

y′
1 = −21y1 + 19y2 − 20y3, y1(0) = 1,

y′
2 = 19y1 − 21y2 + 20y3, y2 = 0,
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y(1) z(1)× 102

Step Method (|error|) (|error|)× 102

0.0625 Jackson-Kenue 0.2735503 −0.2879477
(3× 10−7) (4× 10−7)

Cash (p = 4) 0.2735498 −0.2879471
(3× 10−7) (3× 10−7)

Cash (p = 5) 0.27355005 −0.28794742
(1× 10−8) (1× 10−8)

SSDM (p = 6) 0.27355004 −0.28794740
(9× 10−11) (1× 10−8)

0.03125 Jackson-Kenue 0.27355005 −0.28794742
(1× 10−8) (1× 10−8)

Cash (p = 4) 0.27355003 −0.28794740
(1× 10−8) (1× 10−8)

SSDM (p = 6) 0.27355004 −0.28794741
(4× 10−12) (4× 10−12)

True solution 0.27355004 −0.28794741 × 10−2

Table 1: A comparison of methods for Example 4.1

y′
3 = 40y1 − 40y2 + 40y3, y3 = −1.

The exact solution of the system is given by

y1(x) =
1

2
(e−2x + e−40x(cos(40x) + sin(40x))),

y2(x) =
1

2
(e−2x − e−40x(cos(40x) + sin(40x))),

y3(x) =
1

2
(2e−40x(sin(40x) − cos(40x))).

This problem has also been solved by Amodio and Mazzia [1] using the
Boundary Value Methods (BVMs), implicit Adams methods (Ad-IVMs), and
Backward Differentiation Formulas (BDFs). The results for their order 6 meth-
ods are reproduced in table 2 and compared with the results given by the SSDM
which is also of order 6. It is seen from table 2 that our method performs bet-
ter than those in [1]. In all cases the rate of convergence is consistent with the
order of the methods. Thus, for this example, our method is superior in terms
of accuracy.We note that the maximum relative errors displayed in Table 2 are
computed as max (|y − y(x)|/(1 + |y(x)|)).
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Steps SSDM Rate BVM Rate Ad-IVM Rate BDF rate

20 2.9× 10−3 5.7× 10−2 1.6× 102 2.0× 10−1

40 6.8× 10−5 5.4 8.7× 10−3 2.7 1.8× 10−1 2.6× 10−1

80 1.8× 10−6 5.2 4.9× 10−4 4.2 3.5× 10−4 2.6× 10−3

160 2.9× 10−8 5.9 1.2× 10−5 5.4 9.9× 10−6 5.1 9.1× 10−5 4.8
320 4.6× 10−10 6.0 2.2× 10−7 5.8 2.0× 10−7 5.7 1.8× 10−6 5.6
640 7.4× 10−12 6.0 3.7× 10−9 5.9 3.4× 10−9 5.8 3.3× 10−8 5.8

Table 2: A comparison of methods for Example 4.2

Example 4.3. We consider the following IVP which was solved by Wu
and Xia [28].

y′
1 = −1002y1 + 1000y22 , y1(0) = 1,

y′
2 = y1 − y2(1 + y2), y2(0)) = 1.

Exact : y1(x) = e−2x , y2(x) = e−x

Wu and Xia [28] ASDM

x h N Err(y1) Err(y2) h N Err(y1) Err(y2)

1 0.002 500 2.5606 × 10−7 8.0150 × 10−8 0.04 250 1.3112 × 10−13 1.7186 × 10−13

10 0.001 10000 5.5468 × 10−16 6.0936 × 10−12 0.02 500 1.3235 × 10−22 1.4162 × 10−18

Table 3: Absolute Errors,(Err(y1) = |y(x)−y1|, Err(y2) = |y(x)−y2|),
for Example 4.3

It is obvious from the numerical results in table 3 that our method performs
very well for smaller step sizes h = {0.04, 0.02} compared with the method in
Wu and Xia [28] where step sizes h = {0.002, 0.001} were used.
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Example 4.4. We consider the given non-linear system on the range
0 ≤ x ≤ 48.

y′
1 = −0.013y2 − 1000y1y2 − 2500y1y3, y1(0) = 0,

y′
2 = −0.013y2 − 1000y1y2, y2(0) = 1,

y′
3 = −2500y1y3, y3(0) = 1.

y1(2) y2(2) y3(2)
Step (Rel Err) (Rel Err) (Rel Err)

1/8 −9.837251127012 × 10−7 0.981800332370 1.018198684005
(2.63320 × 10−6) (1.50057 × 10−4) (1.46002 × 10−4)

1/16 −2.631974292087 × 10−6 0.981552379782 1.018444988244
(9.84955 × 10−7) (2.49230 × 10−5) (2.39783 × 10−5)

1/32 −3.597666669215 × 10−6 0.981507192987 1.018489209346
(1.92664 × 10−8) (2.11868 × 10−6) (2.07031 × 10−6)

1/64 −3.616934539598 × 10−6 0.981503257729 1.018493125336
(1.37030 × 10−12) (1.32680 × 10−7) (1.30250 × 10−7)

True solution −3.616933169289 × 10−6 0.9815029948230 1.018493388244

y1(48) y2(48) y3(48)
Step (Rel Err) (Rel Err) (Rel Err)

1/8 −1.946451478612 × 10−6 0.611815992635 1.388182060913
(1.11252 × 10−9) (4.77025 × 10−4) (3.21694 × 10−4)

1/16 −1.945530753856 × 10−6 0.611096683455 1.388901371015
(1.91797 × 10−10) (3.05393 × 10−5) (2.05950 × 10−5)

1/32 −1.9453510082 × 10−6 0.611050574647 1.388947480002
(1.20513 × 10−11) (1.91894 × 10−6) (1.29409 × 10−6)

1/64 −1.945339708518 × 10−6 0.611047675979 1.388950378680
(7.51709 × 10−13) (1.19695 × 10−7) (8.07196 × 10−8)

True solution −1.945338956808 × 10−6 0.6110474831446 1.388950571516

Table 4: Relative errors computed as Rel Err= (|y− y(x)|/(1+ |y(x)|))
for Example 4.4

For this example, we give the relative errors at x = 2 and x = 48. Our
method performs well on this example as shown by the results in table 4. The
exact solutions at x = 2 and x = 48 were taken from Jeltsch[18]. Although,
Jeltsch[18] also gives the relative errors for this problem, we chose not to make
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a comparison with the methods because the results were presented graphically
with a different emphasis.

5. Conclusion

In this paper we show that the SSDM can be adapted using the logic behind the
Simpson’s Rule for quadrature to cope with the integration of stiff systems in
ODEs. This is achieved by combining the SSDM with an additional method and
implementing them as a block method. We have demonstrated the accuracy
of the methods on a linear stiff 2 by 2 system, a linear stiff 3 by 3 system, a
nonlinear 2 by 2 system, and a nonlinear 3 by 3 system (see tables 1 - 4). The
numerical results show that our method is highly competitive with the existing
methods cited in this paper.
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