ON THE GENERATORS OF
THE 2-CLASS GROUP OF THE FIELD $\mathbb{Q}(\sqrt{d}, i)$

Abdelmalek Azizi1, Abdelkader Zekhnini2§, Mohammed Taous3

Department of Mathematics
Faculty of Science
Mohammed First University
Oujda, MOROCCO

3Department of Mathematics
Faculty of Science and Technology
Moulay Ismail University
Errachidia, MOROCCO

Abstract: Let d be a square free integer such that the 2-class group of the field $\mathbb{Q}(\sqrt{d}, i)$ is of type $(2, 2, 2)$. In this paper we give the generators of the 2-class group of $\mathbb{Q}(\sqrt{d}, i)$.

AMS Subject Classification: 11R37, 11R27, 11R29
Key Words: class group of type $(2,2,2)$, Hilbert class field

1. Introduction

Let $k = \mathbb{Q}(\sqrt{d}, i)$, where d is a square free integer, we denote by $C_{k,2}$ the 2-class group of k; let p, p_1 and p_2 (resp. q, q_1 and q_2) be prime integers congruent to 1 (resp. 3) (mod 4). According to [3], $C_{k,2}$ is of type $(2, 2, 2)$ if and only if d is one of the following forms:

Received: August 1, 2012

§Correspondence author
(1) $d = p_1 p_2$, where \(\left(\frac{p_1}{p_2} \right) = -1 \), \(p_1 \equiv p_2 \equiv 1 \pmod{8} \) and \(\left(\frac{2}{a+b} \right) = -1 \) with \(p_1 p_2 = a^2 + b^2 \).

(2) $d = 2p_1 p_2$, where \(p_1 \equiv p_2 \equiv 1 \pmod{4} \) and at least two elements of \(\{ \left(\frac{2}{p_1} \right), \left(\frac{2}{p_2} \right), \left(\frac{p_1}{p_2} \right) \} \) are equal to -1.

(3) $d = 2pq$, where \(p \equiv 1 \), \(q \equiv 3 \pmod{8} \) and \(\left(\frac{p}{q} \right) = -1 \).

(4) $d = pq_1 q_2$, where \(p, q_1, q_2 \) satisfy the conditions \(A \) and \(B \):

\[
A : p \equiv -q_1 \equiv -q_2 \equiv 1 \pmod{4} \) and \(\left(\frac{2}{p} \right) = \left(\frac{q_1}{q_2} \right) = - \left(\frac{q_2}{q_1} \right) = 1.
\]

\[
B : \text{One of the following three conditions is satisfied:}
\]

(I) \(\left(\frac{p}{q_1} \right) \left(\frac{p}{q_2} \right) = -1 \) and \(\left(\frac{2}{q_1} \right) = \left(\frac{2}{q_2} \right) = -1 \).

(II) \(\left(\frac{p}{q_1} \right) \left(\frac{p}{q_2} \right) = -1 \), \(\left(\frac{2}{q_1} \right) = 1 \) and \(\left(\frac{2}{q_2} \right) = -1 \).

(III) \(\left(\frac{p}{q_1} \right) = \left(\frac{p}{q_2} \right) = -1 \) and \(\left(\frac{2}{q_1} \right) \left(\frac{2}{q_2} \right) = -1 \).

(5) $d = p_1 p_2 q$, where \(p_1 \equiv p_2 \equiv 1 \pmod{4} \), \(p_1 \) or \(p_2 \equiv 5 \pmod{8} \) and at least two elements of \(\{ \left(\frac{p_1}{p_2} \right), \left(\frac{p_1}{q} \right), \left(\frac{p_2}{q} \right) \} \) are equal to -1.

In the case where \(d = p_1 p_2 q \), we adopt the following definitions:

(i) \(p_1, p_2 \) and \(q \) are called of type I if one of the following conditions holds:

a) \(\left(\frac{2}{p_1} \right) = 1 \) and \(\left(\frac{2}{p_2} \right) = \left(\frac{p_1}{p_2} \right) = \left(\frac{p_1}{q} \right) = -1 \).

b) \(\left(\frac{2}{p_1} \right) = \left(\frac{2}{p_2} \right) = \left(\frac{p_1}{p_2} \right) = \left(\frac{p_2}{q} \right) = -1 \) and \(\left(\frac{p_1}{q} \right) = 1 \).

c) \(\left(\frac{2}{p_1} \right) = \left(\frac{p_1}{p_2} \right) = 1 \) and \(\left(\frac{2}{p_2} \right) = \left(\frac{p_1}{q} \right) = \left(\frac{p_2}{q} \right) = -1 \).

(ii) \(p_1, p_2 \) and \(q \) are called of type II if one of the following conditions is satisfied:

a) \(\left(\frac{2}{p_1} \right) = 1 \) and \(\left(\frac{2}{p_2} \right) = \left(\frac{p_1}{p_2} \right) = \left(\frac{p_2}{q} \right) = -1 \).

b) \(\left(\frac{2}{p_1} \right) = \left(\frac{2}{p_2} \right) = \left(\frac{p_1}{p_2} \right) = \left(\frac{p_1}{q} \right) = -1 \) and \(\left(\frac{p_2}{q} \right) = 1 \).

(III) \(p_1, p_2 \) and \(q \) are called of type III if one of the following conditions is satisfied:

a) \(\left(\frac{2}{p_1} \right) = \left(\frac{2}{p_2} \right) = \left(\frac{p_1}{q} \right) = \left(\frac{p_2}{q} \right) = -1 \).
result it is a deduction from theorems 1, 2, 3 and 4:

\[C \Rightarrow \text{integer}, \]

In this paper we are interested to give the generators of \(C_{k,2} \) and our main result it is a deduction from theorems 1, 2, 3 and 4:

Theorem (Main Result). Let \(k = \mathbb{Q}(\sqrt{d}, i) \), where \(d \) is a square free integer, \(C_{k,2} \) the 2-class group of \(k \). Suppose \(C_{k,2} \) is of type \((2, 2, 2)\), then we have:

1. If \(d \) is of the form (1), then \(C_{k,2} = \langle [H_0^{\frac{h(d)}{2}}], [H_1], [H_2] \rangle \), where \(H_0, H_1 \) and \(H_2 \) are prime ideals in \(k \) above 2 and \(p_1 \) respectively and \(h(d) \) the class number of \(\mathbb{Q}(\sqrt{d}) \).

2. If \(d \) is of the form (2) or (3), then \(C_{k,2} = \langle [H_0], [H_1], [H_2] \rangle \), where \(H_0 \) is the prime ideal in \(k \) above 2 and \(H_1, H_2 \) are prime ideals in \(k \) above \(p_1 \) (resp. \(p \)) if \(d \) takes the form (2) (resp. (3)).

3. Assume \(d \) is of the form (4), let \(H_1, H_2 \) (resp. \(Q_1, Q_2 \)) be prime ideals in \(k \) above \(p \) (resp. \(q_1, q_2 \)), then:

 (i) If \(p, q_1 \) and \(q_2 \) satisfy \(B \) (I) or \(B \) (II) and \(\left(\frac{p}{q_1} \right) = -\left(\frac{p}{q_2} \right) = 1 \), then \(C_{k,2} = \langle [H_1], [H_2], [Q_2] \rangle \).

 (ii) Else, \(C_{k,2} = \langle [H_1], [H_2], [Q_1] \rangle \).

4. Suppose \(d \) is of the form (5), let \(H_1, H_2 \) (resp. \(H_3, H_4 \)) be prime ideals in \(k \) above \(p_1 \) (resp. \(p_2 \)), then:

 (i) If \(p_1, p_2 \) and \(q \) are of type I, then \(C_{k,2} = \langle [H_1], [H_3], [H_4] \rangle \).

 (ii) If \(p_1, p_2 \) and \(q \) are of type II or of type III, then \(C_{k,2} = \langle [H_1], [H_2], [H_3] \rangle \).

2. Generators of \(C_{k,2} \)

First we give some results that will be useful later.

Proposition 1. Let \(d \) be a square free integer, \(k = \mathbb{Q}(\sqrt{d}, i) \), \(a + ib \) an element of \(\mathbb{Z}(i) \) and \(H \) an ideal of \(k \) such that \(H^2 = (a + ib) \). Let \(\varepsilon_d = x + y\sqrt{d} \) be the fundamental unit of \(\mathbb{Q}(\sqrt{d}) \). So:

1. If \(\sqrt{a^2 + b^2} \notin \mathbb{Q}(\sqrt{d}) \), then \(H \) is not principal in \(k \).
2. If \(a^2 + b^2 = d \), then we have:
(a) If the norm of ε_d is 1, then \mathcal{H} is not principal in k.

(b) If the norm of ε_d is -1, then:

(i) If $(ax \pm yd) \pm b$ or $2(-xb \pm yd) \pm a$ is a square in \mathbb{N}, then \mathcal{H} is principal in k.

(ii) Else \mathcal{H} is not principal in k.

Proof. Let $a + ib$ be an element of $\mathbb{Z}[i]$ and \mathcal{H} an ideal of k such that $\mathcal{H}^2 = (a + ib)$. We suppose that \mathcal{H} is principal, then there exist $\alpha \in k$ and a unit ε in k such that: $\alpha^2 = (a + ib)\varepsilon$ (1). Let ε_d be the fundamental unit of $\mathbb{Q}(\sqrt{d})$, then a fundamental system of units (UFS) of k is $\{\varepsilon_d\}$ or $\{\sqrt{i}\varepsilon_d\}$; in the later case ε_d is of norm 1. It comes down to cases $\varepsilon \in \{\pm 1, \pm i, \varepsilon_d, i\varepsilon_d\}$ or $\varepsilon \in \{\pm 1, \pm i, \varepsilon_d, i\varepsilon_d\}$.

(1) Suppose that $\sqrt{a^2 + b^2} \notin \mathbb{Q}(\sqrt{d})$, then we have:

(i) If $\varepsilon \in \{\pm 1, \pm i, \varepsilon_d, i\varepsilon_d\}$, then by applying the norm $N_{\mathbb{K}/\mathbb{Q}(\sqrt{d})}$ to Equation (1), we find that $\sqrt{a^2 + b^2} \notin \mathbb{Q}(\sqrt{d})$, which is not the case.

(ii) If $\varepsilon = \sqrt{i\varepsilon_d}$ or $\varepsilon = i\sqrt{i\varepsilon_d}$, then the norm $N_{\mathbb{K}/\mathbb{Q}(i)}$ applied to Equation (1), imply that $\sqrt{i} \in \mathbb{Q}(i)$, which is absurd. So \mathcal{H} is not principal in k.

(2) Suppose that $a^2 + b^2 = d$, then we have:

(i) If $\varepsilon = 1$, so by putting $\alpha = \alpha_1 + i\alpha_2$, where α_1, α_2 are in $\mathbb{Q}(\sqrt{d})$, Equation (1) imply that

$$\begin{cases}
\alpha_1^2 - \alpha_2^2 = a, \\
2\alpha_1\alpha_2 = b;
\end{cases}
\Leftrightarrow
\begin{cases}
\alpha_1^4 - 4a\alpha_1^2 - b^2 = 0, \\
\alpha_2 = \frac{b}{2\alpha_1};
\end{cases}$$

and $\Delta' = 4d$, where Δ' is the discriminant of equation (•) for the unknown α_1^2, thus $\alpha_1^2 = \frac{1}{2}(a \pm \sqrt{d})$, therefore equation (•) admits solution if and only if $2(a \pm \sqrt{d})$ is a square in $\mathbb{Q}(\sqrt{d})$, hence there exist s, t in \mathbb{Q} such that $2(a \pm \sqrt{d}) = (s + t\sqrt{d})^2 = s^2 + t^2d + 2st\sqrt{d}$, which is equivalent to:

$$\begin{cases}
s^4 - 2as^2 + d = 0, \\
t = \frac{\pm b}{s};
\end{cases}$$

and $\Delta' = a^2 - d = -b^2$, as $\Delta' < 0$, then $2(a \pm \sqrt{d})$ is not a square in $\mathbb{Q}(\sqrt{d})$. Similar proof if $\varepsilon = -1$.

(ii) Let $\varepsilon = \pm i$. So equation (1) is solvable if and only if $2(\pm b \pm \sqrt{d})$ is a square in $\mathbb{Q}(\sqrt{d})$, but this gives us a negative discriminant $\Delta = -a^2$.

(iii) Let $\varepsilon = \varepsilon_d$, then from Equation (1), there exist α_1, α_2 in $\mathbb{Q}(\sqrt{d})$ such that:
ON THE GENERATORS OF...

\[
\begin{align*}
\alpha_1^2 - \alpha_2^2 &= a_1 \varepsilon_d, \\
2\alpha_1 \alpha_2 &= b_1 \varepsilon_d; \\
\alpha_2 &= \frac{b_2 \varepsilon_d}{2\alpha_1};
\end{align*}
\]

\(\alpha_1^2 = \frac{\varepsilon_d}{2}(a \pm \sqrt{d})\), thus equation (\(*\)) admits solution if and only if \(2\varepsilon_d(a \pm \sqrt{d})\) is a square in \(\mathbb{Q}(\sqrt{d})\) i.e. if and only if there exist \(s, t\) in \(\mathbb{Q}\) such that: \(2\varepsilon_d(a \pm \sqrt{d}) = (s + t\sqrt{d})^2 = s^2 + t^2d + 2st\sqrt{d}\), as \(\varepsilon_d = x + y\sqrt{d}\), so:

\[
\begin{align*}
s^2 + t^2d &= 2xa \pm 2yd, \\
st &= ya \pm x;
\end{align*}
\]

thus \(\Delta' = 4\varepsilon_d^2d\), so \(\alpha_1 = \varepsilon_d\alpha_2\), and \(\Delta' = 4\varepsilon_d^2d\), so the discriminant of equation (\(*\)) is:

\[
\Delta' = (ax \pm yd)^2 - (ya \pm x)^2d = (a^2 - d)(x^2 - y^2d) = -b^2(x^2 - y^2d).
\]

— If the norm of \(\varepsilon_d\) is 1, then equation (\(*\)) has no solution.
— If the norm of \(\varepsilon_d\) is -1, then \(s^2 = (ax \pm yd) \pm b\). Hence equation (\(*\)) admits solution if and only if \((ax \pm yd) \pm b\) is a square in \(\mathbb{N}\).

(iv) Let \(\varepsilon = \varepsilon_d\), then by the same way we find similar results:
— If the norm of \(\varepsilon_d\) is 1, then there is no solutions.
— If the norm of \(\varepsilon_d\) is -1, then there is a solution if and only if \((ax \pm yd) \pm b\) is a square in \(\mathbb{N}\).

(v) If \(\varepsilon = \sqrt{i\varepsilon_d}\) or \(\varepsilon = i\sqrt{i\varepsilon_d}\), as in the case (1) we find that \(i\) is a square in \(\mathbb{Q}(i)\), which is absurd. \(\square\)

We proceed in the same way to prove the following result:

Proposition 2. Let \(d\) be a composite integer, even, square free and product at least of three prime numbers, \(k = \mathbb{Q}(\sqrt{d}, i)\), \(p\) a prime number and \(\mathcal{H}\) an ideal of \(k\) such that \(\mathcal{H}^2 = (p)\). Let \(\varepsilon_d = x + y\sqrt{d}\) be the fundamental unit of \(\mathbb{Q}(\sqrt{d})\). Then we have:

1. If the norm of \(\varepsilon_d\) is -1, so \(\mathcal{H}\) is not principal in \(k\).
2. If the norm of \(\varepsilon_d\) is 1, we have:
 1. If \(\{\varepsilon_d\}\) is UFS of \(k\), then \(\mathcal{H}\) is principal if and only if \(2p(x \pm 1)\) or \(p(x \pm 1)\) is a square in \(\mathbb{N}\).
 2. If not \(\mathcal{H}\) is not principal in \(k\).

Remark 1. Proposition 2 holds if \(d\) is a composite integer, odd, square free and product at least of three prime numbers and \(\mathcal{H}^2 = (p)\) or \(\mathcal{H}^2 = (pq)\), where \(p\) and \(q\) are prime numbers.
2.1. Generators of $C_{k,2}$ when d is Even

If d is even, then it is of the form (2) or (3); so p_1 (resp. p) splits in $\mathbb{Q}(i)$ in product of two primes which we denote by π_1 and π_2.

Theorem 1. Let $k = \mathbb{Q}(\sqrt{d}, i)$, where d is of the form (2) or (3) and $C_{k,2}$ be the 2-class group of k. We denote by \mathcal{H}_0, \mathcal{H}_1 and \mathcal{H}_2 the prime ideals of k laying above $1 + i$, π_1 and π_2 respectively, then $C_{k,2} = \langle [\mathcal{H}_0], [\mathcal{H}_1], [\mathcal{H}_2] \rangle$.

Proof. For both forms (2) and (3), the numbers π_1 and π_2 are ramified primes in $k/\mathbb{Q}(i)$, then there exist \mathcal{H}_1 and \mathcal{H}_2 prime ideals in k such that: $\pi_j \mathcal{O}_k = (\pi_j) = \mathcal{H}_j^2$, ($j \in \{1,2\}$), where \mathcal{O}_k is the ring of integers of k; on the other hand, 2 is totally ramified in k, hence there exists \mathcal{H}_0 an ideal prime of k such that $\mathcal{H}_0^2 = (1 + i)\mathcal{O}_k$.

According to [3], if d is of the form (3) (resp. (2)), then the norm of the fundamental unit of $\mathbb{Q}(\sqrt{d})$ is 1 (resp. -1) and the unit index of k is 2 (resp. 1), so as $(\mathcal{H}_1 \mathcal{H}_2)^2 = (p_1)$ or (p), Proposition 2 claims that $\mathcal{H}_1 \mathcal{H}_2$ is not principal in k; moreover if we put p or $p_1 = e^2 + 4f^2$, we find that $\mathcal{H}_0^2 = (1+i)$, $\mathcal{H}_1^2 = (e+2if)$ and $\mathcal{H}_2^2 = (e-2if)$, as $\sqrt{2} \notin \mathbb{Q}(\sqrt{d})$ and $\sqrt{e^2 + (\pm 2f)^2} = \sqrt{p_1} \notin \mathbb{Q}(\sqrt{d})$, then Proposition 1 states that \mathcal{H}_0, \mathcal{H}_1 and \mathcal{H}_2 are of order 2 in k; similar with the same argument we proof that $\mathcal{H}_0 \mathcal{H}_1$, $\mathcal{H}_0 \mathcal{H}_2$ and $\mathcal{H}_0 \mathcal{H}_1 \mathcal{H}_2$ are of order 2 in k. This completes the proof. \qed

Numerical Examples 1. d is of the form (2).

<table>
<thead>
<tr>
<th>d</th>
<th>$2,p_1,p_2$</th>
<th>$\left(\frac{2}{p_1}\right)$</th>
<th>$\left(\frac{2}{p_2}\right)$</th>
<th>$\left(\frac{p_1}{p_2}\right)$</th>
<th>\mathcal{H}_0</th>
<th>\mathcal{H}_1</th>
<th>\mathcal{H}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>2.13.35</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>$[1,0,1]$</td>
<td>$[0,0,1]$</td>
<td>$[0,1,1]$</td>
</tr>
<tr>
<td>754</td>
<td>2.29.13</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>$[0,1,1]$</td>
<td>$[5,0,1]$</td>
<td>$[5,0,0]$</td>
</tr>
<tr>
<td>986</td>
<td>2.17.29</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$[0,0,1]$</td>
<td>$[0,1,0]$</td>
<td>$[11,0,0]$</td>
</tr>
<tr>
<td>1066</td>
<td>2.13.41</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$[5,1,0]$</td>
<td>$[5,0,1]$</td>
<td>$[5,1,1]$</td>
</tr>
</tbody>
</table>

d take the form (3).

<table>
<thead>
<tr>
<th>$d = 2.p.q$</th>
<th>$\left(\frac{2}{q}\right)$</th>
<th>\mathcal{H}_0</th>
<th>\mathcal{H}_1</th>
<th>\mathcal{H}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>246</td>
<td>-1</td>
<td>$[3,1,0]$</td>
<td>$[3,0,0]$</td>
<td>$[3,1,1]$</td>
</tr>
<tr>
<td>374</td>
<td>-1</td>
<td>$[7,0,0]$</td>
<td>$[0,1,1]$</td>
<td>$[7,1,0]$</td>
</tr>
</tbody>
</table>

2.2. Generators of $C_{k,2}$ when $d = p_1p_2$

Suppose d is of the form (1), defined in the introduction. We adopt that p_k denotes an ideal of a number field k above a prime number p. We need some
lemmas.

Lemma 1. Let \(k = \mathbb{Q}(\sqrt{d}, i) \), where \(d = p_1p_2 = a^2 + b^2 \), \(p_1 \equiv p_2 \equiv 1 \pmod{8} \) and \(\mathcal{H}_0 \) be the prime ideal of \(k \) above \(1+i \). If \((\frac{2}{a+b}) = -1 \), then for all odd integer \(n \), \(\mathcal{H}_0^n \) is not principal ideal of \(k \).

Proof. Suppose \(\mathcal{H}_0' \) is principal in \(k \), for some odd integer \(n \), so there exists \(\alpha = \alpha_1 + \sqrt{d}\alpha_2 \in k \) such that \(\alpha_1 \) are in \(\mathbb{Q}(i) \) and \(\mathcal{H}_0' = \alpha \mathcal{O}_k \). As \(p_1 \equiv p_2 \equiv 1 \pmod{8} \), so \(1+i \) splits in \(k/\mathbb{Q}(i) \), hence there exists a prime ideal \(\mathcal{H}_0' \) in \(k \) above \(1+i \) such that \(\mathcal{H}_0\mathcal{H}_0' = (1+i)\mathcal{O}_k \). This allows us to write: \((1+i)^n = \varepsilon(\alpha_1^2 - d\alpha_2^2) \), with \(\varepsilon \) is a unit of \(\mathbb{Q}(i) \). As \(\alpha_1^2 \) are squares in \(\mathbb{Q}(i) \) and \(n \) is odd, then according to [6, p. 154] and [7, p. 323] we find that:

\[
\left(\frac{1+i}{p_{\mathcal{Q}(i)}} \right) = \left(\frac{\varepsilon}{p_{\mathcal{Q}(i)}} \right) = \left(\frac{2}{p_1} \right)^4 \left(\frac{p_1}{2} \right) = \left(\frac{2}{p_2} \right)^4 \left(\frac{p_2}{2} \right) = 1.
\]

Using this result and according to [7, p. 323] we have \((\frac{2}{a+b}) = 1 \), which contradicts our hypothesis. \(\square \)

Lemma 2. Let \(p_1 \) and \(p_2 \) be two prime numbers such that \(p_1 \equiv p_2 \equiv 1 \pmod{8} \), \((\frac{p_1}{p_2}) = -1 \) and \(h(d) \) be the class number of \(\mathbb{Q}(\sqrt[p_1]{p_2}) \), then:

(i) The 2-class group of \(\mathbb{Q}(\sqrt[p_1]{p_2}) \) is generated by the class of \(p_1\mathbb{Q}(\sqrt[p_1]{p_2}) \);

(ii) The ideal \((2\mathbb{Q}(\sqrt[p_1]{p_2}))^{h(d)/2} \) is principal.

Proof. (i) Since \((\frac{p_1}{p_2}) = -1 \), then according to [4] the norm of the fundamental unit of the \(\mathbb{Q}(\sqrt[p_1]{p_2}) \) is equal to \(-1 \) and it’s 2-class number is 2, therefore the 2-class group of \(\mathbb{Q}(\sqrt[p_1]{p_2}) \) is cyclic of order 2. As \(p_1 \) is ramified in \(\mathbb{Q}(\sqrt[p_1]{p_2})/\mathbb{Q} \), so \(p_1\mathcal{O}_{\mathbb{Q}(\sqrt[p_1]{p_2})} = p_1^2 \mathcal{O}_{\mathbb{Q}(\sqrt[p_1]{p_2})} \) and \(p_1\mathcal{O}_{\mathbb{Q}(\sqrt[p_1]{p_2})} \) is a non-principal ideal, if not there exists \(\varepsilon \), unit of \(\mathbb{Q}(\sqrt[p_1]{p_2}) \), such that \(p_1\varepsilon \) is square in \(\mathbb{Q}(\sqrt[p_1]{p_2}) \), this yields that \(p_1\varepsilon \equiv p_1 \pmod{2} \), \(\varepsilon \equiv \sqrt[p_1]{p_2} \pmod{2} \), this contradicts the fact that the norm of the fundamental unity, \(\varepsilon_{p_1\mathbb{Q}(\sqrt[p_1]{p_2})} \), is \(-1 \) and \(\sqrt[p_1]{p_2} \not\in \mathbb{Q}(\sqrt[p_1]{p_2}) \). Hence the result.

(ii) We know that \((2\mathbb{Q}(\sqrt[p_1]{p_2}))^{h(d)/2} \) is principal in \(\mathbb{Q}(\sqrt[p_1]{p_2}) \). If we suppose that \((2\mathbb{Q}(\sqrt[p_1]{p_2}))^{h(d)/2} \) is not principal, it follows that the class of \((2\mathbb{Q}(\sqrt[p_1]{p_2}))^{h(d)/2} \) is also a generator of the 2-class group of \(\mathbb{Q}(\sqrt[p_1]{p_2}) \). We deduce from (i) that \((2\mathbb{Q}(\sqrt[p_1]{p_2}))^{h(d)/2} p_1\mathcal{O}_{\mathbb{Q}(\sqrt[p_1]{p_2})} \) is principal in \(\mathbb{Q}(\sqrt[p_1]{p_2}) \). As \(p_1 \) is ramified in \(\mathbb{Q}(\sqrt[p_1]{p_2})/\mathbb{Q} \) and 2 splits completely in \(\mathbb{Q}(\sqrt[p_1]{p_2})/\mathbb{Q} \), since \(p_1 \equiv p_2 \equiv 1 \pmod{8} \). This allows us to write by applying the norm that: \(2p_1 = \alpha^2 - p_1p_2\beta^2 \), where \(\alpha^2, \beta^2 \) are in \(\mathbb{Q} \); hence \(1 = (\frac{2p_1}{p_2}) = (\frac{2}{p_2})^4 (\frac{p_1}{p_2}) = (\frac{p_1}{p_2}) \). Which contradicts our hypotheses. Finally \((2\mathbb{Q}(\sqrt[p_1]{p_2}))^{h(d)/2} \) is principal. \(\square \)
Theorem 2. Let $\mathbb{k} = \mathbb{Q}(\sqrt{p_1p_2}, i)$, with p_1, p_2 are prime numbers congruent to 1 (mod 8), $(\frac{2}{p_1}) = -1$ and $(\frac{2}{p_2}) = -1$, where $d = p_1p_2 = a^2 + b^2$, $C_{\mathbb{k}, 2}$ be the 2-class group de of \mathbb{k}. Put $p_1 = \pi_1\pi_2$, where π_1 and π_2 are in $\mathbb{Z}[i]$, let \mathcal{H}_0, \mathcal{H}_1 and \mathcal{H}_2 be the ideals of \mathbb{k} above $1 + i$, π_1 and π_2 respectively. Then $C_{\mathbb{k}, 2} = (\langle H_{\mathcal{H}_0}^{\frac{h(d)}{2}} \rangle, [\mathcal{H}_1], [\mathcal{H}_2])$, where $h(d)$ is the class number of $\mathbb{Q}(\sqrt{p_1p_2})$.

Proof. Put $p_1 = \pi_1\pi_2$, we know that π_j are ramified primes in $\mathbb{k}/\mathbb{Q}(i)$, so there exist prime ideals \mathcal{H}_j in \mathbb{k} such that $\mathcal{H}_j^2 = (\pi_j)$.

As the norm of the fundamental unit of $\mathbb{Q}(\sqrt{d})$ is -1 and $H_1^2 = (e + 2if)$, $H_2^2 = (e - 2if)$ ($\mathcal{H}_1\mathcal{H}_2)^2 = (p_1)$, where $p_1 = e^2 + 4f^2$; so Propositions 1 above and 8 in [1], state that \mathcal{H}_1, \mathcal{H}_2 and $\mathcal{H}_1\mathcal{H}_2$ are of order 2 in \mathbb{k}.

Let us proof that $\mathcal{H}_0^{\frac{h(d)}{2}}$ is of order 2 in \mathbb{k}. We know from [4] that $\frac{h(d)}{2}$ is an odd integer, then Lemma 1 implies that $\mathcal{H}_0^{\frac{h(d)}{2}}$ is not principal, as $\mathcal{H}_0^{\frac{h(d)}{2}} = (\mathcal{H}_0^2)^{\frac{h(d)}{2}} = (2_{\mathbb{Q}(\sqrt{d})}^{\frac{h(d)}{2}}\mathcal{O}_{\mathbb{k}}$, because $2_{\mathbb{Q}(\sqrt{d})}$ is an ramified ideal in $\mathbb{k}/\mathbb{Q}(\sqrt{d})$.

Lemma (1) leads that $\mathcal{H}_0^{\frac{h(d)}{2}}$ is principal in \mathbb{k}, i.e. $\mathcal{H}_0^{\frac{h(d)}{2}}$ is an ideal of order 2. $\mathcal{H}_0^{\frac{h(d)}{2}}$ \mathcal{H}_i is also of order 2 in \mathbb{k}, in fact if for example $\mathcal{H}_0^{\frac{h(d)}{2}}\mathcal{H}_1$ is principal. So by applying the norm in $\mathbb{k}/\mathbb{Q}(\sqrt{d})$, we find that $(2_{\mathbb{Q}(\sqrt{p_1p_2})}^{\frac{h(d)}{2}}\mathcal{P}_1\mathbb{Q}(\sqrt{d})$ is an ideal principal in $\mathbb{Q}(\sqrt{d})$, afterward $\mathcal{P}_1\mathbb{Q}(\sqrt{d})$ is principal in $\mathbb{Q}(\sqrt{d})$. This contradicts Lemma 1. Let us show by absurd also that the ideal $\mathcal{H}_0^{\frac{h(d)}{2}}\mathcal{H}_1\mathcal{H}_2$ is of order 2 in \mathbb{k}. If not, there exists $\alpha \in \mathbb{k}$ such that $\mathcal{H}_0^{\frac{h(d)}{2}}\mathcal{H}_1\mathcal{H}_2 = (\alpha)$, as $\mathcal{H}_1\mathcal{H}_2\mathcal{H}_3\mathcal{H}_4 = (\sqrt{p_1p_2}\pi_3\pi_4) = (\sqrt{p_1p_2})$ is principal in \mathbb{k}, then there exists $\beta \in \mathbb{k}$ such that $\mathcal{H}_0^{\frac{h(d)}{2}}\mathcal{H}_3\mathcal{H}_4 = (\beta)$. By taking norm in $\mathbb{k}/\mathbb{Q}(i)$, we find that $(1 + i)^{\frac{h(d)}{2}}p_1 = \varepsilon(\alpha_1^2 - \alpha_2^2d)$ and $(1 + i)^{\frac{h(d)}{2}}p_2 = \varepsilon'(\beta_1^2 - \beta_2^2d)$, with $\varepsilon, \varepsilon'$ are two units in $\mathbb{Q}(i)$, $\alpha_1, \alpha_2, \beta_1$ and β_2 are elements in $\mathbb{Q}(i)$. This imply that: $\left(\frac{1 + i}{p_1\mathbb{Q}(i)}\right)\left(\frac{p_1}{p_2\mathbb{Q}(i)}\right) = 1$ and $\left(\frac{p_2}{p_1\mathbb{Q}(i)}\right) = 1$. As $\left(\frac{p_1}{p_2}\right) = \left(\frac{p_1}{p_2}\right)$, $\left(\frac{p_2}{p_1}\mathbb{Q}(i)\right) = \left(\frac{p_2}{p_1}\right)$, and $(\frac{p_1}{p_2}) = -1$, then according to [6, p. 154] we find that $\left(\frac{2}{p_1}\right)\left(\frac{p_1}{2}\right) = \left(\frac{2}{p_2}\right)\left(\frac{p_2}{2}\right) = -1$. Finally from [7, p. 323] $(\frac{2}{a+b}) = 1$, which is false. \square

Numerical Examples 2. d is of the form (1).
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline d = p_1p_2 & \left(\frac{p_1}{p_2} \right) & a & b & \left(\frac{2}{p_2} \right) & H_0 & H_1 & H_2 \\ \hline 697 = 17.41 & -1 & 11 & 24 & -1 & [3, 1, 0] & [3, 1, 1] & [0, 1, 0] \\ 3977 = 97.41 & -1 & 56 & 29 & -1 & [0, 0, 1] & [7, 0, 1] & [7, 1, 1] \\ \hline \end{array} \]

2.3. Generators of \(C_{k,2} \) when \(d = pq_1q_2 \)

Theorem 3. Let \(k = \mathbb{Q}(\sqrt{d}, i) \), where \(d = pq_1q_2 \) with \(p \), \(q_1 \) and \(q_2 \) are prime numbers satisfying conditions \(A \) and \(B \) defined in the introduction. Denote by \(C_{k,2} \) the 2-class group of \(k \). Put \(p_1 = \pi_1\pi_2 \), with \(\pi_1 \), \(\pi_2 \) in \(\mathbb{Z}[i] \), let \(\mathcal{H}_1 \), \(\mathcal{H}_2 \), \(\mathcal{Q}_1 \) and \(\mathcal{Q}_2 \) be the prime ideals of \(k \) above \(\pi_1 \), \(\pi_2 \), \(q_1 \) and \(q_2 \) respectively, then:

1. If \(p \), \(q_1 \) and \(q_2 \) are satisfying conditions \(B \) (I) or \(B \) (II) and \(\left(\frac{p}{q_1} \right) = -\left(\frac{p}{q_2} \right) = 1 \), then \(C_{k,2} = \langle [\mathcal{H}_1], [\mathcal{H}_2], [\mathcal{Q}_1], [\mathcal{Q}_2] \rangle \).

2. Else, \(C_{k,2} = \langle [\mathcal{H}_1], [\mathcal{H}_2], [\mathcal{Q}_1] \rangle \).

Proof. As \(q_1 \), \(q_2 \) are congruent to 3 (mod 4), so they are ramified in \(k/\mathbb{Q} \); let \(\mathcal{Q}_1 \) and \(\mathcal{Q}_2 \) be the ideals in \(k \) above \(q_1 \) and \(q_2 \) respectively. We know also that \(\pi_j \) are ramified in \(k/\mathbb{Q}(i) \), then there exist ideals \(\mathcal{H}_j \) in \(k \) such that: \(\langle \pi_j \rangle = \mathcal{H}_j^2 \), moreover \(\mathcal{H}_j \) is not principal in \(k \), in fact if we put \(p_1 = e^2 + 4f^2 \), then \(\mathcal{H}_j^2 = (e \pm 2if)^2 \) and as \(\sqrt{p} \not\in \mathbb{Q}(\sqrt{d}) \), therefore Proposition 1 states the result, similar for \(i, j \in \{1, 2\} \) we have \(\mathcal{H}_i\mathcal{Q}_j \) is not principal in \(k \) because \(\langle \mathcal{H}_i\mathcal{Q}_j \rangle^2 = (\pi_iq_j)^2 \) and \(\pi_iq_j = q_j(e \pm 2if) \), as \(\sqrt{eq_j}^2 + (2fq_j)^2 = q_j\sqrt{p} \not\in \mathbb{Q}(\sqrt{d}) \), hence Proposition 1 implies the result.

Let \(\varepsilon_d = x + y\sqrt{d} \) be the fundamental unit of \(\mathbb{Q}(\sqrt{d}) \); as \(d \equiv 1 \) (mod 4), then the unit index of \(k \) is 1 (corollary 3.2 in [3]), so according to [2] \(x \pm 1 \) is not a square in \(\mathbb{N} \); therefore from Remark 1, if \(\mathcal{H} \) is an ideal of \(k \) satisfy \(\mathcal{H}^2 = (l) \), where \(l \) is a prime number in \(\mathbb{N} \), then \(\mathcal{H} \) is principal if and only if \(l(x \pm 1) \) is a square in \(\mathbb{N} \).

1. For this first case the proof is of two points:

 1. Suppose \(p \), \(q_1 \) and \(q_2 \) satisfy \(B \) (I) and \(\left(\frac{p}{q_1} \right) = -\left(\frac{p}{q_2} \right) = 1 \), so as \(x^2 - 1 = y^2p_1p_2q \), the only possible case is:

 \[
 \begin{cases}
 x \pm 1 = 2q_1y_1^2, \\
 x \pm 1 = 2p_2q_2y_2^2;
 \end{cases}
 \]

 this yields that \(2q_1(x \pm 1) \) is a square in \(\mathbb{N} \) and \(q_2(x \pm 1) \), \(2q_2(x \pm 1) \) are not; as \(\mathcal{Q}_1^2 = (q_1) \) and \(\mathcal{Q}_2^2 = (q_2) \), therefore \(\mathcal{Q}_1 \) is principal in \(k \) and \(\mathcal{Q}_2 \) is not, the result derived.
(ii) Suppose \(p, q_1 \) and \(q_2 \) satisfy \(B \) (II) and \(\left(\frac{p}{q_1} \right) = -\left(\frac{p}{q_2} \right) = 1 \), so as \(x^2 - 1 = y^2p_1p_2q \), the only possible cases are:
\[
\begin{align*}
\{ \ & x \pm 1 = q_1y_1^2, \quad \text{or} \quad x \mp 1 = p_1p_2y_2^2; \quad \text{thus } q_1(x \pm 1) \text{ or } 2q_1(x \pm 1) \text{ is a square in } \mathbb{N} \text{ and } q_2(x \pm 1), 2q_2(x \pm 1) \text{ are not; as } Q_1^2 = (q_1) \text{ and } Q_2^2 = (q_2), \text{ so } Q_1 \text{ is principal in } \mathbb{k} \text{ and } Q_2 \text{ is not, this ends the first case of theorem.}
\end{align*}
\]

(2) In this case we have also two points to distinguish:

(i) Suppose that \(p, q_1 \) and \(q_2 \) satisfy \(B \) (I) or \(B \) (II) and \(\left(\frac{p}{q_2} \right) = -\left(\frac{p}{q_1} \right) = 1 \), we proceed as in the case (1) to prove that \(Q_2 \) is principal in \(\mathbb{k} \) and \(Q_1 \) is not; so the result.

(ii) Suppose that \(p, q_1 \) et \(q_2 \) satisfy \(B \) (III), then since \(x^2 - 1 = y^2p_1q_2 \), the only possible case is: \(\{ x \pm 1 = 2q_1q_2y_1^2, \quad x \mp 1 = 2p_1y_2^2; \quad \text{thus } \} q_1(x \pm 1) \text{ is square in } \mathbb{N} \text{ and } q_1(x \pm 1), 2q_1(x \pm 1), q_2(x \pm 1) \text{ and } 2q_2(x \pm 1) \text{ are not. This completes the proof.} \]

\[\square \]

Numerical Examples 3. \(d = pq_1q_2 \) is of the form (4).

<table>
<thead>
<tr>
<th>(d = pq_1q_2)</th>
<th>(\frac{p}{q_1})</th>
<th>(\frac{p}{q_2})</th>
<th>(\frac{2}{q_1})</th>
<th>(\frac{2}{q_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>357 = 17.7.3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>969 = 17.19.3</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>3553 = 17.11.19</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d = pq_1q_2)</th>
<th>(Q_1)</th>
<th>(Q_2)</th>
<th>(Q_1Q_2)</th>
<th>(H_1)</th>
<th>(H_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>357 = 17.7.3</td>
<td>[1, 1, 0]</td>
<td>[1, 1, 0]</td>
<td>[0, 0, 0]</td>
<td>[0, 0, 1]</td>
<td>[0, 0, 1]</td>
</tr>
<tr>
<td>969 = 17.19.3</td>
<td>[0, 0, 0]</td>
<td>[0, 1, 0]</td>
<td>[0, 1, 0]</td>
<td>[3, 1, 0]</td>
<td>[3, 0, 0]</td>
</tr>
<tr>
<td>3553 = 17.11.19</td>
<td>[0, 0, 1]</td>
<td>[0, 0, 0]</td>
<td>[0, 0, 1]</td>
<td>[3, 1, 1]</td>
<td>[3, 1, 0]</td>
</tr>
</tbody>
</table>

2.4. Generators of \(C_{k,2} \) when \(d = p_1p_2q \)

Let \(d = p_1p_2q \) satisfying the conditions of the form (5), then we have.

Theorem 4. Let \(k = \mathbb{Q}(\sqrt{d}, i) \), where \(d = p_1p_2q \) with \(p_1, p_2 \) and \(q \) are prime numbers such that \(p_1 \equiv p_2 \equiv -q \equiv 1 \) (mod 4), \(p_1 \equiv 5 \) or \(p_2 \equiv 5 \) (mod 8) and at least two elements of \(\{ (\frac{p_1}{p_2}), (\frac{p_1}{q}), (\frac{p_2}{q}) \} \) are equal to -1. Denote by \(C_{k,2} \) the 2-class group of \(k \). Put \(p_1 = \pi_1\pi_2, p_2 = \pi_3\pi_4, \) with \(\pi_1, \pi_2, \pi_3 \) and \(\pi_4 \)
ON THE GENERATORS OF... 783

are in \(\mathbb{Z}[i] \), let \(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3 \) and \(\mathcal{H}_4 \) be the ideals in \(k \) above \(\pi_1, \pi_2, \pi_3 \) and \(\pi_4 \) respectively, then:

1. If \(p_1, p_2 \) and \(q \) are of type I, then \(C_{k,2} = \langle [\mathcal{H}_1], [\mathcal{H}_3], [\mathcal{H}_4] \rangle \).

2. If \(p_1, p_2 \) and \(q \) are of type II or of type III, then \(C_{k,2} = \langle [\mathcal{H}_1], [\mathcal{H}_2], [\mathcal{H}_3] \rangle \).

Proof. We proceed as in the previous case to prove that:

- If \(p_1, p_2 \) and \(q \) are of type I, then \(\mathcal{H}_1 \mathcal{H}_2 \) is principal in \(k \) and \(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4 \) and \(\mathcal{H}_3 \mathcal{H}_4 \) are not.
- If \(p_1, p_2 \) and \(q \) are of type II, then \(\mathcal{H}_3 \mathcal{H}_4 \) is principal in \(k \) and \(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4 \) and \(\mathcal{H}_1 \mathcal{H}_2 \) are not.
- If \(p_1, p_2 \) and \(q \) are of type III, then \(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4, \mathcal{H}_1 \mathcal{H}_2 \) and \(\mathcal{H}_3 \mathcal{H}_4 \) are not principal in \(k \).

Numerical Examples 4. The last case where \(d = p_1 p_2 q \) is of the form (5).

<table>
<thead>
<tr>
<th>(p_1, p_2, q)</th>
<th>(\pi_1)</th>
<th>(\pi_2)</th>
<th>(\pi_3)</th>
<th>(\pi_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13.3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5.13.7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>17.5.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13.5.11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5.17.11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(p_1, p_2, q)</th>
<th>(\mathcal{H}_1)</th>
<th>(\mathcal{H}_2)</th>
<th>(\mathcal{H}_1 \mathcal{H}_2)</th>
<th>(\mathcal{H}_3)</th>
<th>(\mathcal{H}_4)</th>
<th>(\mathcal{H}_3 \mathcal{H}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13.3</td>
<td>[1, 0, 0]</td>
<td>[0, 1, 1]</td>
<td>[1, 1, 1]</td>
<td>[0, 1, 0]</td>
<td>[0, 1, 0]</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>5.13.7</td>
<td>[5, 1, 1]</td>
<td>[5, 0, 1]</td>
<td>[0, 1, 0]</td>
<td>[0, 1, 1]</td>
<td>[0, 0, 1]</td>
<td>[0, 1, 0]</td>
</tr>
<tr>
<td>17.5.7</td>
<td>[0, 1, 1]</td>
<td>[0, 1, 1]</td>
<td>[0, 0, 0]</td>
<td>[0, 1, 0]</td>
<td>[1, 0, 0]</td>
<td>[1, 1, 0]</td>
</tr>
<tr>
<td>13.5.11</td>
<td>[1, 0, 0]</td>
<td>[0, 1, 0]</td>
<td>[1, 1, 0]</td>
<td>[0, 1, 1]</td>
<td>[0, 1, 1]</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>5.17.11</td>
<td>[7, 1, 0]</td>
<td>[7, 0, 0]</td>
<td>[0, 1, 0]</td>
<td>[7, 1, 1]</td>
<td>[7, 1, 1]</td>
<td>[0, 0, 0]</td>
</tr>
</tbody>
</table>

References

A. Azizi, M. Taous, Determination des corps $\mathbb{Q}(\sqrt{d}, i)$ dont le 2-groupes de classes est de type $(2, 4)$ ou $(2, 2, 2)$, *Rend. Istit. Mat. Univ. Trieste*, 40, No. XL (2009), 93-116.

