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1. Introduction

Several researchers like Singh [6], Khare [3], Mittal and Kumar [5], Singh and
Singh [7] and Jadia [2] have studied (N, pn), (N, p, q), almost (N, p, q) and ma-
trix summability methods of Fourier Series and its conjugate series using differ-
ent conditions. But nothing seems to have been done so far to study (C,2)(E,q)
product summability of Fourier series and its conjugate series. Therefore, in
this paper, two theorems on (C,2)(E,q) summability of Fourier series and its
conjugate series have been proved under a general condition.

Let
∑∞

n=0 un be a given infinite series with sequence of its nth partial sum
{sn}.The (C,2) transform is defined as the nth partial sum of (C,2) summability
and is given by

tn =
2

(n+ 1)(n + 2)

n
∑

k=0

(n− k + 1)sk → s as n→ ∞ (1.1)

then the infinite series
∑∞

n=0 un is summable to the definite number s by (C,2)
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method. If

(E, q) = Eq
n =

1

(1 + q)n

n
∑

k=0

(

n
k

)

qn−k sk → s as n→ ∞ (1.2)

then the infinite series
∑∞

n=0un is said to be summable (E, q) to a definite
number s (Hardy [3]). The (C,2) transform of (E,q) transform defines (C,2)(E,q)
transform and we denote it by C2

nE
q
n. Thus if

C2
nE

q
n =

2

(n+ 1)(n + 2)

n
∑

k=0

Eq
n → s as n→ ∞ (1.3)

then the series
∑∞

n=0un is said to be summable by (C, 2) (E, q) means or
summable (C, 2) (E, q) to a definite number s. Therefore, we can write C2

nE
q
n →

s as n→ ∞.
The method (C, 2) (E, q) is regular and this case is supposed throughout

this paper.
Let f (x) be a 2π-periodic function of x and integrable over [−π, π] in the

sense of Lebesgue. The Fourier series of f (x) is given by

f (x) ∼
a0
2

+

∞
∑

n=1

(an cosnx+ bn sinnx) ≡

∞
∑

n=1

An (x) (1.4)

The conjugate series of Fourier series (4) is given by

∞
∑

n=1

(an sinnx− bn cosnx) ≡

∞
∑

n=1

Bn (x) (1.5)

We use the following notations:

φ (t) = f (x+ t) + f (x− t)− 2f (x)

ψ (t) = f (x+ t)− f (x− t)

Kn (t) =
1

π (n+ 1) (n+ 2)

n
∑

k=0

[

n− k + 1

(1 + q)k

k
∑

ν=0

{

(

k
ν

)

qk−ν sin
(

ν + 1
2

)

t

sin t
2

}]

K̄n (t) =
1

π (n+ 1) (n+ 2)

n
∑

k=0

[

n− k + 1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qn−ν cos
(

ν + 1
2

)

t

sin (t/2)

]

τ =
[

1
t

]

, where τ denotes the greatest integer not greater than 1
t
.



A STUDY ON (C,2)(E,q) PRODUCT SUMMABILITY 323

2. Main Theorems

We prove the following theorems:

Theorem 1. Let {pn} be a positive, monotonic, non-increasing sequence
of real constants such that

Pn =

n
∑

ν

pν → ∞ as n→ ∞.

If

Φ (t) =

∫ t

0
|φ (u) | du = o

[

t

α
(

1
t

)

.Pτ

]

as t→ +0, (2.1)

where α (t) is a positive, monotonic and non-increasing function of t and

log (n+ 1) = O [{α (n+ 1)} Pn+1] , as n→ ∞ (2.2)

then the Fourier series (1.4) is summable (C, 2) (E, q) to f (x).

Theorem 2. Let {pn} be a positive, monotonic, non-increasing sequence
of real constants such that

Pn =

n
∑

ν

pν → ∞ as n→ ∞.

If

Ψ(t) =

∫ t

0
|ψ (u) | du = o

[

t

α
(

1
t

)

Pτ

]

as t→ +0, (2.3)

where α (t) is a positive, monotonic and non-increasing function of t

(1 + q)τ
n
∑

k=τ

(

n− k + 1

(1 + q)k

)

= O(n+ 1)(n + 2) (2.4)

and condition (2.2), then the conjugate Fourier series (1.5) is summable
(C, 2) (E, q) to

f̄ (x) = −
1

2π

∫ 2π

0
ψ (t) cot

(

t

2

)

dt

at every point where this integral exists.
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3. Lemmas

For the proof of our theorems, following lemmas are required:

Lemma 1.

|Kn (t)| = O(n+ 1), for 0 ≤ t ≤
1

n+ 1

Proof. For 0 ≤ t ≤ 1
n+1 , sinnt ≤ n sin t

|Kn (t)| ≤
1

π (n+ 1) (n + 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

(n− k + 1)

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν (2ν + 1) sin t
2

sin t
2

]∣

∣

∣

∣

∣

≤
1

π (n+ 1) (n + 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

(n− k + 1)

(1 + q)k
(2k + 1)

k
∑

ν=0

(

k
ν

)

qk−ν

]
∣

∣

∣

∣

∣

=
1

π (n+ 1) (n + 2)

n
∑

k=0

[(n− k + 1) (2k + 1)]

=
n+ 1

π (n+ 1) (n + 2)

n
∑

k=0

(2k + 1)−
1

π (n+ 1) (n+ 2)

n
∑

k=0

[k (2k + 1)]

=
1

π(n+ 2)

n
∑

k=0

(2k + 1)−
1

π (n+ 1) (n+ 2)

[

2
n
∑

k=0

k2 +
n
∑

k=0

k

]

=
(n+ 1)2

π(n+ 2)
−

1

π (n+ 1) (n+ 2)

[

n(n+ 1)(2n + 1)

3
+
n(n+ 1)

2

]

=
(n+ 1)2

π(n+ 2)
−
n(2n+ 1)

3π(n + 2)
−

n

2π(n + 2)

=
2n2 + 7n+ 6

6π(n + 2)

= O (n+ 1)

Lemma 2.

|Kn (t)| = O

(

1

t

)

, for
1

n+ 1
≤ t ≤ π.

Proof. For 1
n+1 ≤ t ≤ π, applying Jordan’s lemma, sin

(

t
2

)

≥ t
π
and sinnt ≤

1.

|Kn (t)| ≤
1

π (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

(n− k + 1)

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν sin
(

ν + 1
2

)

t

sin
(

t
2

)

]∣

∣

∣

∣

∣
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≤
(n+ 1)

π (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν 1
(

t
π

)

]
∣

∣

∣

∣

∣

−
1

π (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

k

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν 1
(

t
π

)

]
∣

∣

∣

∣

∣

≤
1

t(n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν

]
∣

∣

∣

∣

∣

−
1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

k

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν

]∣

∣

∣

∣

∣

≤
1

t(n+ 2)

n
∑

k=0

1−
1

t (n+ 1) (n+ 2)

n
∑

k=0

k

≤
(n+ 1)

t(n+ 2)
−

1

t (n+ 1) (n+ 2)

(

n(n+ 1)

2

)

≤
n+ 1

t(n+ 2)
−

n

2t(n+ 2)

≤
1

t(n+ 2)

(

n+ 1−
n

2

)

≤
1

t(n+ 2)

(n

2
+ 1
)

= O

(

1

t

)

Lemma 3.

K̄n (t) = O

(

1

t

)

, for 0 ≤ t ≤
1

n+ 1

Proof. For 0 ≤ t ≤ 1
n+1 , sin (t/2) ≥ (t/π) and |cosnt| ≤ 1

∣

∣Kn (t)
∣

∣ =
1

π (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

n− k + 1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν cos
(

ν + 1
2

)

t

sin (t/2)

]
∣

∣

∣

∣

∣

≤
1

π (n+ 1) (n+ 2)

n
∑

k=0

[

n− k + 1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν

∣

∣cos
(

ν + 1
2

)

t
∣

∣

|sin (t/2)|

]

≤
1

t (n+ 1) (n+ 2)

n
∑

k=0

[

n− k + 1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν

]
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=
1

t (n+ 1) (n+ 2)

n
∑

k=0

[

n− k + 1

(1 + q)k
(1 + q)k

]

=
1

t (n+ 1) (n+ 2)

n
∑

k=0

(n− k + 1)

= O

(

1

t

)

Lemma 4. For 0 ≤ a ≤ b ≤ ∞, 0 ≤ t ≤ π and any n,

∣

∣K̄n (t)
∣

∣ = O

(

1

t

)

Proof. For 0 ≤ 1
n+1 ≤ t ≤ π, sin (t/2) ≥ (t/π)

∣

∣Kn (t)
∣

∣ =
1

π (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

n− k + 1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν cos
(

ν + 1
2

)

t

sin (t/2)

]
∣

∣

∣

∣

∣

≤
1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

n− k + 1

(1 + q)k
Re

{

k
∑

ν=0

(

k
ν

)

qk−ν ei(ν+
1

2) t

}]∣

∣

∣

∣

∣

≤
1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

n− k + 1

(1 + q)k
Re

{

k
∑

ν=0

(

k
ν

)

qk−ν eiν t

}]
∣

∣

∣

∣

∣

∣

∣

∣
e

it
2

∣

∣

∣

≤
1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=0

[

n− k + 1

(1 + q)k
Re

{

k
∑

ν=0

(

k
ν

)

qk−ν eiν t

}]
∣

∣

∣

∣

∣

≤
1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

τ−1
∑

k=0

[

n− k + 1

(1 + q)k
Re

{

k
∑

ν=0

(

k
ν

)

qk−ν eiν t

}]
∣

∣

∣

∣

∣

+
1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=τ

[

n− k + 1

(1 + q)k
Re

{

k
∑

ν=0

(

k
ν

)

qk−ν eiν t

}]∣

∣

∣

∣

∣

(3.1)

Now considering first term of (3.1)

1

t (n+ 1) (n + 2)

∣

∣

∣

∣

∣

τ−1
∑

k=0

[

n− k + 1

(1 + q)k
Re

{

k
∑

ν=0

(

k
ν

)

qk−ν eiν t

}]∣

∣

∣

∣

∣
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≤
1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

τ−1
∑

k=0

n− k + 1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν

∣

∣

∣

∣

∣

∣

∣eiν t
∣

∣

≤
1

t (n+ 1) (n+ 2)

τ−1
∑

k=0

[

n− k + 1

(1 + q)k

k
∑

ν=0

(

k
ν

)

qk−ν

]

≤
1

t (n+ 1) (n+ 2)

τ−1
∑

k=0

(n− k + 1)

=
1

t (n+ 1) (n+ 2)

τ−1
∑

k=0

(n+ 1)−
1

t (n+ 1) (n+ 2)

τ−1
∑

k=0

k

=
1

t(n+ 2)

τ−1
∑

k=0

1−
1

t (n+ 1) (n + 2)

τ−1
∑

k=0

k

=
τ − 1

t(n+ 2)
−

τ(τ − 1)

t(n+ 1)(n + 2)

≤ k

(

1

t

)

(3.2)

Now considering second term of (3.1) and using Abel’s Lemma

1

t (n+ 1) (n+ 2)

∣

∣

∣

∣

∣

n
∑

k=τ

[

n− k + 1

(1 + q)k
Re

{

k
∑

ν=0

(

k
ν

)

qk−ν eiν t

}]
∣

∣

∣

∣

∣

≤
1

t (n+ 1) (n+ 2)

n
∑

k=τ

n− k + 1

(1 + q)k
max

0≤ m≤ k

∣

∣

∣

∣

∣

k
∑

ν=0

(

k
ν

)

qk−ν eiν t

∣

∣

∣

∣

∣

≤
k

t (n+ 1) (n+ 2)
(1 + q)τ

n
∑

k=τ

n− k + 1

(1 + q)k
(3.3)

Combining (3.1) to (3.3), we get

Kn (t) ≤ k

(

1

t

)

+ k

{

(

1

(n+ 1) (n+ 2)

)

(1 + q)τ
n
∑

k=τ

(

n− k + 1

(1 + q)k

)}

(3.4)
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4. Proof of Main Theorems

Proof of Theorem 1. Following Titchmarsh [8] and using Riemann-Lebesgue
theorem, sn(f ;x) of the series (1.4) is given by

sn (f ;x)− f (x) =
1

2π

∫ π

0
φ (t)

sin
(

n+ 1
2

)

t

sin t
2

dt

Therefore using (1), the (E, q) transform Eq
n of sn (f ;x) is given by

Eq
n − f (x) =

1

2π(1 + q)k

∫ π

0
φ (t)

{

n
∑

k=0

(

n
k

)

qk−ν sin
(

k + 1
2

)

t

sin t
2

}

dt

Now denoting (C, 2) (E, q) transform of sn (f ;x) by C
2
nE

q
n, we write

C
2
nE

q
n − f (x) =

1

π(n+ 1)(n+ 2)

n
∑

k=0

[

(n− k + 1)

(1 + q)k

∫ π

0

φ (t)

sin t
2

{

k
∑

ν=0

(

k

ν

)

q
k−ν sin

(

ν +
1

2

)

t

}

dt

]

(4.1)

=

∫ π

0

φ (t) Kn (t) dt

In order to prove the theorem, we have to show that, under our assumptions

∫ π

0
φ (t) Kn (t) dt = o (1) as n→ ∞

For 0 < δ < π, we have

∫ π

0
φ (t) Kn (t) dt =

[

∫ 1

n+1

0
+

∫ δ

1

n+1

+

∫ π

δ

]

φ (t) Kn (t) dt

= I1.1 + I1.2 + I1.3 (say) (4.2)

We consider, |I1.1| ≤

∫ 1

n+1

0
|φ (t)| |Kn (t)| dt

= O (n+ 1)

[

∫ 1

n+1

0
|φ (t)| dt

]

using Lemma 1

= O (n+ 1)

[

o

{

1

(n+ 1) α (n+ 1)Pn+1

}]

by (2.1)
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= o

{

1

α (n+ 1)Pn+1

}

= o

{

1

log (n+ 1)

}

using (2.2)

= o(1), as n→ ∞ (4.3)

Now we consider, |I1.2| ≤

∫ δ

1

n+1

|φ (t)| |Kn (t)| dt

= O

[

∫ δ

1

n+1

|φ (t)|

(

1

t

)

dt

]

using Lemma 2

= O

[

{

1

t
Φ (t)

}δ

1

n+1

+

∫ δ

1

n+1

1

t2
Φ (t) dt

]

= O

[

o

{

1

α (1/t)Pτ

}δ

1

n+1

+

∫ δ

1

n+1

o

(

1

t α
(

1
t

)

Pτ

)

dt

]

by (2.1)

Putting 1
t
= u in second term,

I1.2 = O

[

o

{

1

α (n+ 1)Pn+1

}

+

∫ n+1

1
δ

o

(

1

u α (u)Pu

)

du

]

= o

{

1

α (n+ 1)Pn+1

}

+ o

{

1

(n+ 1 )α (n+ 1)Pn+1

}
∫ n+1

1

δ

1.du

= o

{

1

log (n+ 1)

}

+ o

{

1

log (n+ 1)

}

by (2.2)

= o(1) + o(1), as n→ ∞

= o(1), as n→ ∞. (4.4)

By Riemann- Lebesgue theorem and by regularity condition of the method of
summability,

|I1.3| ≤

∫ π

δ

|φ (t)| |Kn (t)| dt

= o(1), as n→ ∞ (4.5)

Combining (4.1) to (4.4), C2
nE

q
n − f(x) = o(1), as n→ ∞

Proof of Theorem 2. Let s̄n (f ;x) denotes the partial sum of series (1.5).
Then following Lal [4] and using Riemann- Lebesgue theorem, s̄n (f ;x) of series
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(1.5) is given by

s̄n (f ;x)− f̄ (x) =
1

2π

∫ π

0
ψ (t)

cos
(

n+ 1
2

)

t

sin
(

t
2

) dt

Therefore using (1.5), the (E, q) transform Eq
n of s̄n (f ;x) is given by

Ēq
n − f̄ (x) =

1

2π (1 + q)n

∫ π

0
ψ (t)

{

n
∑

k=0

(

n
k

)

qn−k cos
(

k + 1
2

)

t

sin t
2

}

dt

Now denoting (C, 2) (E, q) transform of s̄n by (C2
nE

q
n), we write

(C2
nE

q
n)− f̄ (x) =

1

π(n+ 1)(n+ 2)

n
∑

k=0

[

(n− k + 1)

(1 + q)k

∫ π

0

ψ (t)

sin t
2

{

k
∑

ν=0

(

k

ν

)

q
k−ν cos

(

ν +
1

2

)

t

}

dt

]

=

∫ π

0

ψ (t) K̄n (t) dt

In order to prove the theorem, we have to show that, under our assumptions

∫ π

0
ψ (t) K̄n (t) dt = o(1) as n→ ∞

For 0 < δ < π, we have

∫ π

0
ψ (t) K̄n (t) dt =

[

∫ 1

n+1

0
+

∫ δ

1

n+1

+

∫ π

δ

]

ψ (t) K̄n (t) dt

= I2.1 + I2.2 + I2.3 (say) (4.6)

We consider, |I2.1| ≤

∫ 1

n+1

0
|ψ (t)|

∣

∣K̄n (t)
∣

∣ dt

= O

[

∫ 1

n+1

0

1

t
|ψ (t)| dt

]

using Lemma 3

= O (n+ 1)

[

∫ 1

n+1

0
|ψ (t)| dt

]

= O (n+ 1)

[

o

{

1

(n+ 1) α (n+ 1)Pn+1

}]

by (2.3)
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= o

{

1

α (n+ 1)Pn+1

}

= o

{

1

log (n+ 1)

}

using (2.2)

= o(1), as n→ ∞ (4.7)

Now, |I2.2| ≤

∫ δ

1

n+1

|ψ (t)|
∣

∣K̄n (t)
∣

∣ dt

≤ k

∫ δ

1

n+1

[

1

t
+

(

1

t (n+ 1) (n+ 2)

)

(1 + q)τ
n
∑

k=τ

n− k + 1

(1 + q)k

]

|ψ (t)| dt

= O

[

∫ δ

1

n+1

(

1

t

)

|ψ (t)| dt

]

by (2.4)

= O

[

{

1

t
Ψ(t)

}δ

1

n+1

+

∫ δ

1

n+1

1

t2
Ψ(t) dt

]

= O



o

{

1

α
(

1
t

)

Pτ

}δ

1

n+1

+

∫ δ

1

n+1

o

(

1

t α
(

1
t

)

Pτ

)

dt



 by (2.3)

Putting 1
t
= u in second term,

|I2.2| = O

[

o

{

1

α (n+ 1)Pn+1

}

+

∫ n+1

1
δ

o

(

1

u α (u)Pu

)

du

]

= o

{

1

α (n+ 1)Pn+1

}

+ o

{

1

(n+ 1 )α (n+ 1)Pn+1

}
∫ n+1

1

δ

1.du

= o

{

1

log (n+ 1)

}

+ o

{

1

log (n+ 1)

}

= o(1) + o(1), as n→ ∞ by (2.2)

= o(1), as n→ ∞ (4.8)

By Riemann- Lebesgue theorem and by regularity condition of the method of
summability,

|I2.3| ≤

∫ π

δ

|ψ (t)|
∣

∣K̄n (t)
∣

∣ dt
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= o(1), as n→ ∞ (4.9)

Combining (4.5) to (4.8), (C2
nE

q
n)− f̄ (x) = o(1), as n→ ∞
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