NOTES ON FUZZY ORDERED IDEALS AND FUZZY ORDERED FILTERS IN ORDERED Γ-GROUPOIDS

Aiyared Iampan¹ §, Manoj Siripitukdet²

¹Department of Mathematics
School of Science
University of Phayao
Phayao 56000, THAILAND

²Department of Mathematics
Faculty of Science
Naresuan University
Phitsanulok, 65000, THAILAND

Abstract: The fuzzy ordered ideals and fuzzy ordered filters in ordered Γ-groupoids are discussed in this note. A necessary and sufficient condition has been established for fuzzy ordered ideals and fuzzy ordered filters to be characteristic.

AMS Subject Classification: 20M10
Key Words: fuzzy ordered ideal, fuzzy ordered filter, ordered Γ-groupoid

1. Introduction and Prerequisites

A fuzzy subset \(f \) of a set \(S \) is a function from \(S \) to a closed interval \([0, 1]\). The concept of a fuzzy subset of a set was first considered by Zadeh [14] in 1965. The fuzzy set theories developed by Zadeh and others have found many applications in the domain of mathematics and elsewhere.

After the introduction of the concept of fuzzy sets by Zadeh [14], several researches were conducted on the generalizations of the notion of fuzzy set and application to many algebraic structures such as: In 1971, Rosenfeld [9] was

As we know, Γ-groupoids are a generalization of groupoids. This paper is a sequel to our study [3] of fuzzification in ordered groupoids.

Our aim in this paper is fourfold.

1. To introduce the notions of fuzzy ordered ideals and fuzzy ordered filters in ordered Γ-groupoids.

2. To characterize the properties of fuzzy ordered ideals and fuzzy ordered filters in ordered Γ-groupoids.

3. To characterize the relationship between ordered ideals and fuzzy ordered ideals.

4. To characterize the relationship between ordered filters and fuzzy ordered filters.

To present the main theorems we discuss some elementary definitions that we use later.

Definition 1.1. Let M be a set. A fuzzy subset of M is an arbitrary mapping $f : M \to [0, 1]$ where $[0, 1]$ is the unit segment of the real line.

Definition 1.2. Let M be a set and $A \subseteq M$. The characteristic mapping $f_A : M \to [0, 1]$ defined via

$$x \mapsto f_A(x) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

By the definition of characteristic mapping, f_A is a mapping of M into $\{0, 1\} \subset [0, 1]$. Hence f_A is a fuzzy subset of M.
Definition 1.3. Let M and Γ be any two nonempty sets. Then (M, Γ) is called a Γ-groupoid [11] if there exists a mappings $M \times \Gamma \times M \to M$, written as $(a, \gamma, b) \mapsto a\gamma b$. A nonempty subset K of M is called a Γ-subgroupoid of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

Definition 1.4. A partially ordered Γ-groupoid (M, Γ, \leq) is called an ordered Γ-groupoid [10] if for any $a, b, c \in M$ and $\gamma \in \Gamma$, $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$.

Definition 1.5. Let (M, Γ, \leq) be an ordered Γ-groupoid. A nonempty subset A of M is called an ordered left ideal of M if

L1. $M\Gamma A \subseteq A$.

L2. For any $b \in M$ and $a \in A$, $b \leq a$ implies $b \in A$.

A nonempty subset A of M is called an ordered right ideal of M if

R1. $A\Gamma M \subseteq A$.

R2. For any $b \in M$ and $a \in A$, $b \leq a$ implies $b \in A$.

A nonempty subset A of M is called an ordered ideal of M if it is both an ordered left and an ordered right ideal of M. That is,

I1. $M\Gamma A \subseteq A$ and $A\Gamma M \subseteq A$.

I2. For any $b \in M$ and $a \in A$, $b \leq a$ implies $b \in A$.

Definition 1.6. Let (M, Γ, \leq) be an ordered Γ-groupoid. A Γ-subgroupoid F of M is called an ordered filter of M if

F1. For any $a, b \in M$ and $\gamma \in \Gamma$, $a\gamma b \in F$ implies $a, b \in F$.

F2. For any $b \in M$ and $a \in F$, $a \leq b$ implies $b \in F$.

Definition 1.7. Let (M, Γ, \leq) be an ordered Γ-groupoid. For $H \subseteq M$, we define

$$\{H\} = \{t \in M \mid t \leq h \text{ for some } h \in H\}.$$

Definition 1.8. Let (M, Γ, \leq) be an ordered Γ-groupoid. A fuzzy subset f of M is called a fuzzy ordered left ideal of M if

FL1. For any $a, b \in M$, $a \leq b$ implies $f(a) \geq f(b)$.

FL2. $f(a\gamma b) \geq f(b)$ for all $a, b \in M$ and $\gamma \in \Gamma$.

A fuzzy subset f of M is called a fuzzy ordered right ideal of M if

FR1. For any $a, b \in M, a \leq b$ implies $f(a) \geq f(b)$.

FR2. $f(a \gamma b) \geq f(a)$ for all $a, b \in M$ and $\gamma \in \Gamma$.

A fuzzy subset f of M is called a fuzzy ordered ideal of M if it is both a fuzzy ordered left and a fuzzy ordered right ideal of M. That is,

FI1. For any $a, b \in M, a \leq b$ implies $f(a) \geq f(b)$.

FI2. $f(a \gamma b) \geq f(b)$ and $f(a \gamma b) \geq f(a)$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 1.9. Let (M, Γ, \leq) be an ordered Γ-groupoid. A fuzzy subset f of M is called a fuzzy ordered filter of M if

FF1. For any $a, b \in M, a \leq b$ implies $f(a) \leq f(b)$.

FF2. $f(a \gamma b) = \min\{f(a), f(b)\}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 1.10. Let (M, Γ) be a Γ-groupoid. A fuzzy subset f of M is called a fuzzy Γ-subgroupoid of M if

FF1. For any $a, b \in M, a \leq b$ implies $f(a) \leq f(b)$.

FF2. $f(a \gamma b) \geq \min\{f(a), f(b)\}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 1.11. Let (M, Γ) be a Γ-groupoid and f a fuzzy subset of M. The mapping

$$f^* : M \rightarrow [0, 1]$$

defined via $f^*(x) = 1 - f(x)$

is a fuzzy subset of M called the complement of f in S.

Definition 1.12. Let (M, Γ, \leq) be an ordered Γ-groupoid. A fuzzy subset f of M is called prime if $f(a \gamma b) \leq \max\{f(a), f(b)\}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

2. Lemmas

Lemma 2.1. If (M, Γ, \leq) is an ordered Γ-groupoid and $\emptyset \neq A \subseteq M$, then the characteristic mapping $f_{(A)}$ is a fuzzy subset of M satisfying the following condition:

$$x, y \in M, x \leq y \Rightarrow f_{(A)}(x) \geq f_{(A)}(y).$$
Hence \(f \in \gamma \), without loss of generality, we may assume that \(f \neq 0 \). Assume that \(f \). Proof. If \(y \not\in (A) \), then \(f(A)(y) = 0 \) and so \(f(A)(x) \geq 0 = f(A)(y) \). Let \(y \in (A) \). Then \(f(A)(y) = 1 \). Since \(y \in (A) \), there exists \(a \in A \) such that \(y \leq a \). We have \(x \leq a \), whence \(x \in (A) \). Then \(f(A)(x) = 1 \) and so \(f(A)(x) = 1 = f(A)(y) \).

Lemma 2.2. Let \((M, \Gamma)\) be a \(\Gamma \)-groupoid and \(f \) a fuzzy subset of \(M \). Then the following statements are equivalent:

(i) \(f(x \gamma y) = \min\{f(x), f(y)\} \) for all \(x, y \in M \) and \(\gamma \in \Gamma \).

(ii) \(f'(x \gamma y) = \max\{f'(x), f'(y)\} \) for all \(x, y \in M \) and \(\gamma \in \Gamma \).

Proof. Assume that \(f(x \gamma y) = \min\{f(x), f(y)\} \) for \(x, y \in M \) and \(\gamma \in \Gamma \). Without loss of generality, we may assume that \(f(x \gamma y) = f(x) \). Then \(f(x) \leq f(y) \), so \(f'(x \gamma y) = 1 - f(x \gamma y) = 1 - f(x) = f'(x) \) and \(f(x) = 1 - f(x) \geq 1 - f(y) = f(y) \). Hence \(f(x \gamma y) = \max\{f(x), f(y)\} \).

Conversely, assume that \(f'(x \gamma y) = \max\{f'(x), f'(y)\} \) for \(x, y \in M \) and \(\gamma \in \Gamma \). Without loss of generality, we may assume that \(f(x \gamma y) = f(x) \). Then \(f'(x) \geq f'(y) \), so \(1 - f(x \gamma y) = 1 - f(x) \) and \(1 - f(x) \geq 1 - f(y) \). Thus \(f(x \gamma y) = f(x) \) and \(f(x) \leq f(y) \). Hence \(f(x \gamma y) = \min\{f(x), f(y)\} \).

3. Main Results

Proposition 3.1. Let \((M, \Gamma, \leq)\) be an ordered \(\Gamma \)-groupoid and \(\emptyset \neq A \subseteq M \). Then \(A = (A) \) if and only if the fuzzy subset \(f_A \) of \(M \) has the following property:

\[
x, y \in M, x \leq y \Rightarrow f_A(x) \geq f_A(y).
\]

Proof. It follows from Lemma 2.1.

Conversely, let \(x \in (A) \). Then there exists \(a \in A \) such that \(x \leq a \). By the hypothesis, we have \(f_A(x) \geq f_A(a) \). Since \(a \in A \), we have \(f_A(a) = 1 \). Then \(f_A(x) = 1 \) and so \(x \in A \). Hence \((A) \subseteq A \). We can easily see that \(A \subseteq (A) \). Therefore \(A = (A) \).

Proposition 3.2. Let \((M, \Gamma, \leq)\) be an ordered \(\Gamma \)-groupoid and \(\emptyset \neq L \subseteq M \). Then \(L \) is an ordered left ideal of \(M \) if and only if the fuzzy subset \(f_L \) is a fuzzy ordered left ideal of \(M \).
Proof. By the definition of characteristic mapping, \(f_L \) is a mapping of \(M \) into \(\{0,1\} \subset [0,1] \). Hence \(f_L \) is a fuzzy subset of \(M \).

FL1: Let \(x, y \in M \) be such that \(x \leq y \). If \(y \notin L \), then \(f_L(y) = 0 \) and so \(f_L(x) \geq 0 = f_L(y) \). Let \(y \in L \). Then \(f_L(y) = 1 \). Since \(x \leq y \in L \) and \(L \) is an ordered left ideal of \(M \), we have \(x \in L \). Thus \(f_L(x) = 1 \) and so \(f_L(x) = 1 \geq 1 = f_L(y) \).

FL2: Let \(x, y \in M \) and \(\gamma \in \Gamma \). If \(y \notin L \), then \(f_L(y) = 0 \) and so \(f_L(x \gamma y) \geq 0 = f_L(y) \). Let \(y \in L \). Then \(f_L(y) = 1 \). Since \(x \gamma y \in MTL \subseteq L \), we have \(f_L(x \gamma y) = 1 \). Thus \(f_L(x \gamma y) = 1 \geq 1 = f_L(y) \).

Therefore the fuzzy subset \(f_L \) is a fuzzy ordered left ideal of \(M \).

Conversely, we shall show that \(L \) is an ordered left ideal of \(M \).

L1: Let \(x \in M, y \in L \) and \(\gamma \in \Gamma \). Since \(f_L \) is a fuzzy ordered left ideal of \(M \), we have \(f_L(x \gamma y) \geq f_L(y) \). Since \(y \in L \), we have \(f_L(y) = 1 \). Thus \(f_L(x \gamma y) = 1 \) and so \(x \gamma y \in L \).

L2: Let \(x \in M \) and \(y \in L \) be such that \(x \leq y \). Since \(f_L \) is a fuzzy ordered left ideal of \(M \), we have \(f_L(x) \geq f_L(y) \). Since \(y \in L \), we have \(f_L(y) = 1 \). Thus \(f_L(x) = 1 \) and so \(x \in L \).

Therefore \(L \) is an ordered left ideal of \(M \). \(\square \)

Corollary 3.3. Let \((M, \Gamma, \leq)\) be an ordered \(\Gamma \)-groupoid and \(\emptyset \neq I \subseteq M \). Then \(I \) is an ordered ideal of \(M \) if and only if the fuzzy subset \(f_I \) is a fuzzy ordered ideal of \(M \).

Proposition 3.4. Let \((M, \Gamma, \leq)\) be an ordered \(\Gamma \)-groupoid and \(\emptyset \neq F \subseteq M \). Then \(F \) is an ordered filter of \(M \) if and only if the fuzzy subset \(f_F \) is a fuzzy ordered filter of \(M \).

Proof. We shall show that the fuzzy subset \(f_F \) is a fuzzy ordered filter of \(M \).

FF1: Let \(x, y \in M \) be such that \(x \leq y \). If \(x \notin F \), then \(f_F(x) = 0 \) and so \(f_F(x) = 0 \leq f_F(y) \). Let \(x \in F \). Then \(f_F(x) = 1 \). Since \(y \geq x \in F \) and \(F \) is an ordered filter of \(M \), we have \(y \in F \). Thus \(f_F(y) = 1 \) and so \(f_F(x) = 1 \leq 1 = f_F(y) \).

FF2: Let \(x, y \in M \) and \(\gamma \in \Gamma \). If \(x \gamma y \notin F \), then \(f_F(x \gamma y) = 0 \). Since \(x \gamma y \notin F \), we have \(x \notin F \) or \(y \notin F \). Thus \(f_F(x) = 0 \) or \(f_F(y) = 0 \), so \(\min\{f_F(x), f_F(y)\} = 0 \). Hence \(f_F(x \gamma y) = 0 = \min\{f_F(x), f_F(y)\} \). Let \(x \gamma y \in F \). Then \(f_F(x \gamma y) = 1 \). Since \(x \gamma y \in F \), we have \(x \in F \) and \(y \in F \). Thus \(f_F(x) = 1 \) and \(f_F(y) = 1 \), so \(\min\{f_F(x), f_F(y)\} = 1 \). Hence \(f_F(x \gamma y) = 1 = \min\{f_F(x), f_F(y)\} \).

Therefore the fuzzy subset \(f_F \) is a fuzzy ordered filter of \(M \).

Conversely, let \(x, y \in F \) and \(\gamma \in \Gamma \). Since \(f_F \) is a fuzzy ordered filter of \(M \), we have \(f_F(x \gamma y) = \min\{f_F(x), f_F(y)\} \). Suppose \(x \gamma y \notin F \). Then \(f_F(x \gamma y) = 0 \),
so \(\min \{f_F(x), f_F(y)\} = 0\). Thus \(f_F(x) = 0\) or \(f_F(y) = 0\), so \(x \notin F\) or \(y \notin F\). It is impossible, hence \(x \gamma y \in F\). Therefore \(F\) is a \(\Gamma\)-subgroupoid of \(M\).

F1: Let \(x, y \in M\) and \(\gamma \in \Gamma\) be such that \(x \gamma y \in F\). Since \(f_F\) is a fuzzy ordered filter of \(M\), we have \(f_F(x \gamma y) = \min \{f_F(x), f_F(y)\}\). Since \(x \gamma y \in F\), we have \(f_F(x \gamma y) = 1\). Thus \(\min \{f_F(x), f_F(y)\} = 1\) and so \(f_F(x) = f_F(y) = 1\). Hence \(x, y \in F\).

Therefore \(F\) is an ordered filter of \(M\).

Proposition 3.5. Let \((M, \Gamma, \leq)\) be an ordered \(\Gamma\)-groupoid and \(f\) a fuzzy subset of \(M\). Then \(f\) is a fuzzy ordered filter of \(M\) if and only if the complement \(f^t\) of \(f\) is a prime fuzzy ordered ideal of \(M\).

Proof. We shall show that the complement \(f^t\) of \(f\) is a prime fuzzy ordered ideal of \(M\).

F11: Let \(x, y \in M\) be such that \(x \leq y\). Since \(f\) is a fuzzy ordered filter of \(M\), we have \(f(x) \leq f(y)\). Then \(-f(x) \geq -f(y)\), so \(1 - f(x) \geq 1 - f(y) = f^t(y)\).

F12: Let \(x, y \in M\) and \(\gamma \in \Gamma\). Since \(f\) is a fuzzy ordered filter of \(M\), we have \(f(x \gamma y) = \min \{f(x), f(y)\}\). By Lemma 2.2, we have \(f^t(x \gamma y) = \max \{f^t(x), f^t(y)\}\).

Thus \(f^t(x \gamma y) \geq f^t(x)\) and \(f^t(x \gamma y) \geq f^t(y)\).

Hence the complement \(f^t\) of \(f\) is a fuzzy ordered ideal of \(M\).

In the proof of F12, we have that \(f^t(x \gamma y) \leq \max \{f(x), f^t(y)\}\) for all \(x, y \in M\) and \(\gamma \in \Gamma\). Therefore the complement \(f^t\) of \(f\) is a prime fuzzy ordered ideal of \(M\).

Conversely, we shall show that \(f\) is a fuzzy ordered filter of \(M\).

F11: Let \(x, y \in M\) be such that \(x \leq y\). Since \(f^t\) is a fuzzy ordered ideal of \(M\), we have \(f^t(x) \geq f^t(y)\). Then \(1 - f^t(x) \leq 1 - f^t(y)\) and so \(f(x) \leq f(y)\).

F12: Let \(x, y \in M\) and \(\gamma \in \Gamma\). Since \(f^t\) is a prime fuzzy ordered ideal of \(M\), we have \(f^t(x \gamma y) \geq f^t(x), f^t(x \gamma y) \geq f^t(y)\), and \(f(x \gamma y) \leq \max \{f(x), f^t(y)\}\). Hence \(f^t(x \gamma y) = \max \{f^t(x), f^t(y)\}\). By Lemma 2.2, we have \(f(x \gamma y) = \min \{f(x), f(y)\}\).

Therefore \(f\) is a fuzzy ordered filter of \(M\).

Acknowledgments

This work was financially supported by the Commission on Higher Education (CHE), the Thailand Research Fund (TRF), the University of Phayao (UP), Project MRG5380232.
The authors would like to thank the referee for the useful comments and suggestions given in an earlier version of this paper.

References

