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Abstract: In this article, we introduce the notion of Kannan type cyclic
weakly contraction and derive the existence of fixed point for such mappings in
the setup of complete metric spaces. Our result extend and improve some fixed
point theorems in the literature.
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1. Introduction and Preliminaries

It is well known that Banach’s fixed point theorem for contraction mappings
is one of the pivotal results in analysis. It has been used in many different
fields of mathematics, but suffers from one major drawback i.e. in order to use
the contractive condition, a self mapping T must be Lipschitz continuous, with
Lipschitz constant L < 1. In particular, T must be continuous at all points of
its domain.

A natural question is that whether we can find contractive conditions which
will imply existence of fixed point in a complete metric space but will not imply
continuity.
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Kannan [10], [11] proved the following result, giving an affirmative answer
to above question.

Theorem 1.1. If T : X → X, where (X, d) is a complete metric space,
satisfies

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)], (1.1)

where 0 < k < 1
2 and x, y ∈ X, then T has a unique fixed point.

The mappings satisfying (1.1) are called Kannan type mappings.

Alber and Guerre-Delabriere [1] introduced the concept of weakly contrac-
tive mappings and proved the existence of fixed points for single-valued weakly
contractive mappings in Hilbert spaces. Thereafter, in 2001, Rhoades [15]
proved the fixed point theorem which is one of the generalizations of Banach’s
Contraction Mapping Principle, because the weakly contractions contains con-
tractions as a special case and he also showed that some results of [1] are true for
any Banach space. In fact, weakly contractive mappings are closely related to
the mappings of Boyd and Wong [2] and of Reich types [14]. Fixed point prob-
lems involving different type of contractive type inequalities have been studied
by many authors (see [1]-[15] and references cited therein).

On the other hand, Kirk et al. [13] in 2003 introduce the following notion
of cyclic representation and characterize the Banach Contraction Principle in
the context of cyclic mapping.

Definition 1.1. [13] Let X be a non-empty set and T : X → X an
operator. By definition, X = ∪m

i=1Xi is a cyclic representation of X with
respect to T if:

(a) Xi; i = 1, . . . ,m are non-empty sets,

(b) T (X1) ⊂ X2,. . . , T (Xm−1) ⊂ Xm, T (Xm) ⊂ X1.

In this paper, we introduce the notion of cyclic weakly Kannan type con-
tractions and then derive a fixed point theorem on such cyclic contractions in
the framework of complete metric spaces.

2. Main Results

We introduce the notion of Kannan type cyclic weakly contraction in metric
space.

Let Φ denote all monotone increasing continuous functions µ : [0,∞) →
[0,∞) with µ(t) = 0 if and only if t = 0 and Ψ denote all the lower semi-
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continuous functions ψ : [0,∞)2 → [0,∞) with ψ(t) > 0 for t ∈ (0,∞) and
ψ(0) = 0.

Definition 2.1. Let (X, d) be a metric space, m ∈ N, A1, A2 . . . , Am

nonempty subsets of X and Y = ∪m
i=1Ai. An operator T : Y → Y is called a

Kannan type cyclic weakly contraction if

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) µ(d(Tx, Ty)) ≤ µ(12 [d(x, Tx) + d(y, Ty)]) − ψ(d(x, Tx), d(y, Ty))

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, µ ∈ Φ and ψ ∈ Ψ.

Theorem 2.1. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . .,
Am nonempty closed subsets of X and Y = ∪m

i=1Ai. Suppose that T is a
Kannan type cyclic weakly contraction. Then, T has a fixed point z ∈ ∩n

i=1Ai.

Proof. Let x0 ∈ X. We can construct a sequence xn+1 = Txn, n =
0, 1, 2, . . .. If there exists n0 ∈ N such that xn0+1 = xn0

, hence the result.
Indeed, we have Txn0

= xn0+1 = xn0
. So we assume that xn+1 6= xn for any

n = 0, 1, 2, . . .. As X = ∪m
i=1Ai, for any n > 0 there exists in ∈ {1, 2, . . . ,m}

such that xn−1 ∈ Ain and xn ∈ Ain+1
. Since T is a Kannan type cyclic weakly

contraction, we have

µ(d(xn+1, xn)) = µ(d(Txn, Txn−1))

≤ µ(
1

2
[d(xn, Txn) + d(xn−1, Txn−1)])−

ψ(d(xn, Txn), d(xn−1, Txn−1))

= µ(
1

2
[d(xn, xn+1) + d(xn−1, xn)])

−ψ(d(xn, xn+1), d(xn−1, xn)) (2.1)

≤ µ(
1

2
[d(xn, xn+1) + d(xn−1, xn)]).

Since µ is a non-decreasing function, for all n = 1, 2 . . ., we have

d(xn+1, xn) ≤ d(xn, xn−1). (2.2)

Thus {d(xn+1, xn)} is a monotone decreasing sequence of non-negative real
numbers and hence is convergent. Hence there exists r ≥ 0 such that d(xn+1, xn)
→ r. Letting n→ ∞ in (2.2), we obtain that lim d(xn−1, xn+1) = 2r.

Letting n→ ∞ in (2.1), using the continuity of µ and lower semi-continuity
of ψ, we obtain that µ(r) ≤ µ(r)−ψ(r, r). This implies that ψ(r, r) ≤ 0 by the
continuity of ψ, which is a contradiction unless r = 0. Thus we proved that

d(xn+1, xn) → 0.
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Now, we show that {xn} is a Cauchy sequence. For this, we prove the
following claim first:

(A) For every ǫ > 0, there exists n ∈ N such that if r, q ≥ n with r− q ≡ 1(m),
then d(xr, xq) < ǫ.

Assume the contrary of (A). Thus there exists ǫ > 0 such that for any
n ∈ N, we can find rn > qn ≥ n with rn − qn ≡ 1(m) satisfying d(xrn , xqn) ≥ ǫ.

Now, we take n > 2m. Then corresponding to qn ≥ n, we can choose rn
in such that it is a smallest integer with rn > qn satisfying rn − qn ≡ 1(m)
and d(xrn , xqn) ≥ ǫ. Therefore, d(xrn−m

, xqn) < ǫ. By using the triangular
inequality, we have

ǫ ≤ d(xqn , xrn)

≤ d(xqn , xrn−m
) +

m∑
i=1

d(xrn−i
, xrn−i+1

)

< ǫ+

m∑
i=1

d(xrn−i
, xrn−i+1

).

Letting n→ ∞ and using d(xn+1, xn) → 0, we have

lim d(xqn , xrn) = ǫ. (2.3)

Again by triangular inequality,

ǫ ≤ d(xqn , xrn)

≤ d(xqn , xqn+1
) + d(xqn+1

, xrn+1
) + d(xrn+1

, xrn)

≤ d(xqn , xqn+1
) + d(xqn+1

, xqn) + d(xqn , xrn) + d(xrn , xrn+1
) + d(xrn+1

, xrn).

Letting n→ ∞ and using d(xn+1, xn) → 0, we have

lim d(xqn+1
, xrn+1

) = ǫ. (2.4)

As xqn and xrn lie in different adjacently labeled sets Ai and Ai+1 for certain
1 ≤ i ≤ m, using the fact T is a Kannan type cyclic weakly contraction, we
have

µ(ǫ) ≤ µ(d(xqn+1
, xrn+1

))

= µ(d(Txqn , Txrn))

≤ µ(
1

2
[d(xqn , Txqn) + d(xrn , Txrn)])−
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ψ(d(xqn , Txqn), d(xrn , Txrn))

= µ(
1

2
[d(xqn , xqn+1

) + d(xrn , xrn+1
)]) −

ψ(d(xqn , xqn+1
), d(xrn , xrn+1

)). (2.5)

On taking n → ∞ in (2.5), using continuity of µ, and lower semi-continuity of
ψ, we get that ǫ = 0, which is contradiction with ǫ > 0. Hence (A) is proved.

Using (A), we shall show that {xn} is a Cauchy sequence in Y . Fix ǫ > 0.
By (A), we can find n0 ∈ N such that r, q ≥ n0 with r − q ≡ 1(m)

d(xr, xq) ≤
ǫ

2
. (2.6)

Since lim d(xn, xn+1) = 0, we can also find n1 ∈ N such that

d(xn, xn+1) ≤
ǫ

2m
, (2.7)

for any n ≥ n1. Assume that r, s ≥ max{n0, n1} and s > r. Then there
exists k ∈ {1, 2, . . . ,m} such that s − r ≡ k(m). Hence s − r + t = 1(m) for
t = m− k + 1. So, we have

d(xr, xs) ≤ d(xr, xs+j) + d(xs+j , xs+j−1) + . . .+ d(xs+1, xs). (2.8)

Using (2.6), (2.7) and (2.8), we have

d(xr, xs) ≤
ǫ

2
+ j ×

ǫ

2m
≤
ǫ

2
+m×

ǫ

2m
= ǫ. (2.9)

Hence {xn} is a Cauchy sequence in Y . Since Y is closed in X, then Y is also
complete and there exists x ∈ Y such that limxn = x.

Now, we shall prove that x is a fixed point of T . As Y = ∪m
i=1Ai is a cyclic

representation of Y with respect to T , the sequence {xn} has infinite terms in
each Ai for i = {1, 2, . . . ,m}. Suppose that x ∈ Ai, Tx ∈ Ai+1 and we take a
subsequence {xnk

} of {xn} with xnk
∈ Ai. By using the contractive condition,

we can obtain

µ(d(xnk+1, Tx)) = µ(d(Txnk
, Tx))

≤ µ(
1

2
[d(xnk

, Txnk
) + d(x, Tx)]) −

ψ(d(xnk
, Txnk

), d(x, Tx))

= µ(
1

2
[d(xnk

, xnk+1) + d(x, Tx)]) −

ψ(d(xnk
, xnk+1), d(x, Tx)).
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Letting n → ∞ and using continuity of µ and lower semi-continuity of ψ, we
have

µ(d(x, Tx)) ≤ µ(
1

2
d(x, Tx))− ψ(0, d(x, Tx)),

which is a contradiction unless d(x, Tx) = 0. Hence x is a fixed point of T .

Now, we shall prove the uniqueness of fixed point. Suppose that x1 and
x2 (x1 6= x2) are two fixed points of T . Using the contractive condition and
continuity of µ and lower semi continuity of ψ, we have

µ(d(x1, x2)) = µ(d(Tx1, Tx2))

≤ µ(
1

2
[d(x1, Tx1) + d(x2, Tx2)])− ψ(d(x1, Tx1), d(x2, Tx2))

= µ(
1

2
[d(x1, x1) + d(x2, x2)])− ψ(d(x1, x1), d(x2, x2))

= 0,

which is a contradiction. Hence the result.

If µ(a) = a, then we have the following result.

Corollary 2.2. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . .,
Am nonempty closed subsets of X and Y = ∪m

i=1Ai. Suppose that T : Y → Y

be an operator such that:

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) d(Tx, Ty) ≤ 1
2 [d(x, Tx) + d(y, Ty)]− ψ(d(x, Tx), d(y, Ty))

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1 and ψ ∈ Ψ. Then,
T has a fixed point z ∈ ∩n

i=1Ai.

If ψ(a, b) = (12 − k)(a+ b), where k ∈ [0, 12), we have the following result.

Corollary 2.3. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . .,
Am nonempty closed subsets of X and Y = ∪m

i=1Ai. Suppose that T : Y → Y

be an operator such that

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) there exists k ∈ [0, 12) such that d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)]

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1. Then, T has a
fixed point z ∈ ∩n

i=1Ai.
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Other consequences of our results are the given in the following, for map-
pings involving contractions of integral type.

Denote by Λ the set of functions µ : [0,∞) → [0,∞) satisfying the following
hypotheses:

(h1) µ is a Lebesgue-integrable mapping on each compact of [0,∞);

(h2) for any ǫ > 0, we have
∫ ǫ

0 µ(t) > 0.

Corollary 2.4. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . .,
Am nonempty closed subsets of X and Y = ∪m

i=1Ai. Suppose that T : Y → Y

be an operator such that

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to T ;

(2) there exists k ∈ [0, 12) such that

∫ d(Tx,Ty)

0
α(s)ds ≤ k

∫ d(x,Tx)+d(y,Ty)

0
α(s)ds

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1 and α ∈ Λ. Then,
T has a fixed point z ∈ ∩n

i=1Ai.

If we take Ai = X, i = 1, 2, . . . ,m, we obtain the following result.

Corollary 2.5. Let (X, d) be a complete metric space and T : X → X be
a mapping such that

∫ d(Tx,Ty)

0
α(s)ds ≤ k

∫ d(x,Tx)+d(y,Ty)

0
α(s)ds

for any xy ∈ X, k ∈ [0, 12 ) and α ∈ Λ. Then, T has a fixed point z ∈ ∩n
i=1Ai.
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