ON \((E,1)(C,1)\) SUMMABILITY OF
FOURIER SERIES AND ITS CONJUGATE SERIES

Hare Krishna Nigam\(^1\), Kusum Sharma\(^2\)

Department of Mathematics
Faculty of Engineering and Technology
Mody Institute of Technology and Science (Deemed University)
Laxmangarh, 332311, Sikar, Rajasthan, INDIA

Abstract: Several researchers like Singh [7], Khare [3], Mittal and Kumar [5], singh and singh [8], Pandey [6] and Jadia [2] have studied \((N, p_n)\), \((N, p, q)\), almost \((N, p, q)\) and matrix summability methods of Fourier series and its conjugate series using different conditions. But nothing seems to have been done so far to study \((E,1)(C,1)\) product summability of Fourier series and its conjugate series. Therefore, in this paper, two theorems on \((E,1)(C,1)\) summability of Fourier series and its conjugate series under a general condition have been proved.

AMS Subject Classification: 42B05, 42B08

Key Words: degree of approximation, \((C,1)\) summability, \((E,1)\) summability, \((C,1) (E,1)\) product summability, Fourier series, Lebesgue integral

1. Introduction

Let \(\sum_{n=0}^{\infty} u_n\) be a given infinite series with sequence of its \(n^{th}\) partial sum \(\{s_n\}\).

The \((C,1)\) transform is defined as the \(n^{th}\) partial sum of \((C,1)\) summability and is given by

\[
t_n = \frac{s_0 + s_1 + s_2 + \ldots + s_n}{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} s_k \rightarrow s \text{ as } n \rightarrow \infty
\]  \hspace{1cm} (1.1)

then the infinite series \(\sum_{n=0}^{\infty} u_n\) is summable to the definite number \(s\) by \((C,1)\)
method. If
\[(E, 1) = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} s_k \to s \text{ as } n \to \infty \tag{1.2}\]
then the infinite series \(\sum_{n=0}^{\infty} u_n\) is said to be summable \((E, 1)\) to a definite number \(s\) (Hardy[1]). The \((E, 1)\) transform of \((C, 1)\) transform defines \((E, 1)(C, 1)\) transform and we denote it by \((EC)_{n}^{1}\).

Thus if
\[
(EC)_{n}^{1} = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} C_{k}^{1} \to s \text{ as } n \to \infty. \tag{1.3}
\]

Then the series \(\sum_{n=0}^{\infty} u_n\) is said to be summable by \((E, 1)(C, 1)\) means or summable \((E, 1) (C, 1)\) to a definite number \(s\). Therefore, we can write \((EC)_{n}^{1} \to s \text{ as } n \to \infty\).

The method \((E, 1) (C, 1)\) is regular and this case is supposed throughout this paper.

Let \(f(x)\) be a \(2\pi\)-periodic function of \(x\) and integrable over \([-\pi, \pi]\) in the sense of Lebesgue. The Fourier series \(f(x)\) is given by
\[
f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=1}^{\infty} A_n(x) \tag{1.4}\]

The conjugate series of Fourier series (1.4) is given by
\[
\sum_{n=1}^{\infty} (a_n \cos nx - b_n \sin nx) \equiv \sum_{n=1}^{\infty} B_n(x) \tag{1.5}\]

We use the following notations:
\[
\phi(t) = f(x + t) + f(x - t) - 2f(x)
\]
\[
\psi(t) = f(x + t) + f(x - t)
\]
\[
K_n(t) = \frac{1}{\pi} 2^{n+1} \sum_{k=0}^{n} \left\{ \binom{n}{k} \frac{1}{(1 + k)} \sum_{\nu=0}^{k} \frac{\sin \left(\nu + \frac{1}{2}\right) t}{\sin \frac{t}{2}} \right\}
\]
\[
\bar{K}_n(t) = \frac{1}{\pi} 2^{n+1} \sum_{k=0}^{n} \left\{ \binom{n}{k} \frac{1}{(1 + k)} \sum_{\nu=0}^{k} \frac{\cos \left(\nu + \frac{1}{2}\right) t}{\sin \frac{t}{2}} \right\}
\]
\[
\tau = \left[\frac{1}{t}\right], \text{ where } \tau \text{ denotes the greatest integer not greater than } \frac{1}{t}.
\]
2. Main Theorems

We will prove the following theorems.

**Theorem 1.** Let \( \{p_n\} \) be a positive, monotonic, non-increasing sequence of real constants such that

\[
P_n = \sum_{\nu=0}^{n} p_\nu \to \infty \text{ as } n \to \infty
\]

If

\[
\Phi(t) = \int_{0}^{t} |\phi(u)| \, du = o\left[\frac{t}{\alpha\left(\frac{1}{t}\right) \cdot P_{n}}\right] \text{ as } t \to +0, \tag{2.1}
\]

where \( \alpha(t) \) is a positive, monotonic and non-increasing function of \( t \) and

\[
\log(n+1) = O\left[\alpha(n+1) \cdot P_{n+1}\right] \text{ as } n \to \infty \tag{2.2}
\]

then the Fourier series (1.4) is summable \((E,1)(C,1)\) to \( f(x) \).

**Theorem 2.** Let \( \{p_n\} \) be a positive, monotonic, non-decreasing sequence of real constants such that

\[
P_n = \sum_{\nu=0}^{n} p_\nu \to \infty \text{ as } n \to \infty
\]

If

\[
\Psi(t) = \int_{0}^{t} |\psi(u)| \, du = o\left[\frac{t}{\alpha\left(\frac{1}{t}\right) \cdot P_{n}}\right] \text{ as } t \to +0, \tag{2.3}
\]

where \( \alpha(t) \) is a positive, monotonic and non-increasing function of \( t \) and condition (2.2), then the conjugate series (1.5) is summable to

\[
\mathcal{f}(x) = -\frac{1}{2\pi} \int_{0}^{2\pi} \psi(t) \cot\left(\frac{t}{2}\right) \, dt
\]

at every point where this integral exists.
3. Some Lemmas

For the proof of our theorems, following lemmas are required:

**Lemma 1.**

\[ |K_n(t)| = O(n + 1) \text{ for } 0 \leq t \leq \frac{1}{n+1}. \]

**Proof.** For \(0 \leq t \leq \frac{1}{n+1},\) \(\sin nt \leq n \sin t\)

\[
|K_n(t)| \leq \frac{1}{\pi} \frac{1}{2^{n+1}} \left| \sum_{k=0}^{n} \left( \binom{n}{k} \frac{1}{1+k} \sum_{\nu=0}^{k} \frac{\sin \left(\nu + \frac{1}{2}\right) t}{\sin \frac{t}{2}} \right) \right|
\]

\[
\leq \frac{1}{\pi} \frac{1}{2^{n+1}} \left| \sum_{k=0}^{n} \left( \binom{n}{k} \frac{1}{1+k} \sum_{\nu=0}^{k} \frac{(2\nu + 1) \sin \frac{t}{2}}{\sin \frac{t}{2}} \right) \right|
\]

\[
= \frac{1}{\pi} \frac{1}{2^{n+1}} \left| \sum_{k=0}^{n} \left( \binom{n}{k} (k+1) \right) \right|
\]

\[
= O \left( \frac{n+1}{2^n} \sum_{k=0}^{n} \left( \binom{n}{k} \right) \right)
\]

\[
= O(n+1) \text{ since } \sum_{k=0}^{n} \left( \binom{n}{k} \right) = 2^n.
\]

**Lemma 2.**

\[ |K_n(t)| = O\left(\frac{1}{t}\right) \text{ for } \frac{1}{n+1} \leq t \leq \pi. \]

**Proof.** For \(\frac{1}{n+1} \leq t \leq \pi\), by applying Jordan’s lemma, \(\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}\) and \(\sin nt \leq 1\).

\[
|K_n(t)| \leq \frac{1}{\pi} \frac{1}{2^{n+1}} \left| \sum_{k=0}^{n} \left( \binom{n}{k} \frac{1}{1+k} \sum_{\nu=0}^{k} \frac{\sin \left(\nu + \frac{1}{2}\right) t}{\sin \frac{t}{2}} \right) \right|
\]

\[
\leq \frac{1}{\pi} \frac{1}{2^{n+1}} \left| \sum_{k=0}^{n} \left( \binom{n}{k} \frac{1}{1+k} \sum_{\nu=0}^{k} \frac{1}{t/\pi} \right) \right|
\]

\[
= \frac{1}{2^{n+1} t} \left| \sum_{k=0}^{n} \left( \binom{n}{k} \frac{1}{1+k} \sum_{\nu=0}^{k} (1) \right) \right|
\]
\[
\sum_{k=0}^{n} \left[ \binom{n}{k} \right] = 1
\]

\[= O \left( \frac{1}{t} \right) \quad \text{since} \quad \sum_{k=0}^{n} \binom{n}{k} = 2^n. \]

Lemma 3.

\[\bar{K}_n(t) = O \left[ \frac{1}{t} \right] \quad \text{for} \quad 0 \leq t \leq \frac{1}{n+1}. \]

Proof. \[0 \leq t \leq \frac{1}{n+1}, \quad \sin \left( \frac{t}{2} \right) \geq \frac{t}{\pi} \quad \text{and} \quad |\cos nt| \leq 1. \]

\[
|\bar{K}_n(t)| = \frac{1}{\pi} \frac{1}{2^{n+1}} \sum_{k=0}^{n} \left\{ \binom{n}{k} \frac{1}{(1+k)} \sum_{\nu=0}^{k} \frac{\cos \left( \nu + \frac{1}{2} \right) t}{\sin \frac{t}{2}} \right\} \]

\[\leq \frac{1}{\pi} \frac{1}{2^{n+1}} \sum_{k=0}^{n} \left\{ \binom{n}{k} \frac{1}{(1+k)} \sum_{\nu=0}^{k} \frac{|\cos \left( \nu + \frac{1}{2} \right) t|}{\sin \frac{t}{2}} \right\} \]

\[= \frac{1}{2^{n+1}} \frac{1}{t} \sum_{k=0}^{n} \binom{n}{k} \frac{1}{(1+k)} \sum_{\nu=0}^{k} (1) \]

\[= \frac{1}{2^{n+1}} \frac{2^n}{t} \]

\[= O \left[ \frac{1}{t} \right] \quad \text{since} \quad \sum_{k=0}^{n} \binom{n}{k} = 2^n. \]

Lemma 4. For \[0 \leq a \leq b \leq \infty, \quad 0 \leq t \leq \pi \quad \text{and} \quad \text{any} \quad n, \quad \text{we have} \]

\[|\bar{K}_n(t)| = O \left[ \frac{1}{t} \right]. \]

Proof. \[0 \leq \frac{1}{n+1} \leq t \leq \pi, \quad \sin \left( \frac{t}{2} \right) \geq \frac{t}{\pi}. \]

\[
|\bar{K}_n(t)| = \frac{1}{\pi} \frac{1}{2^{n+1}} \sum_{k=0}^{n} \left\{ \binom{n}{k} \frac{1}{(1+k)} \sum_{\nu=0}^{k} \frac{\cos \left( \nu + \frac{1}{2} \right) t}{\sin \frac{t}{2}} \right\} \]

\[\leq \frac{1}{2^{n+1}} \frac{1}{t} \sum_{k=0}^{n} \left[ \binom{n}{k} \frac{1}{(1+k)} \Re \left\{ \sum_{\nu=0}^{k} e^{i(\nu+\frac{1}{2})t} \right\} \right] \]
\[
\begin{align*}
&\leq \frac{1}{2^{n+1}} t \sum_{k=0}^{n} \left[ \binom{n}{k} \frac{1}{1+k} Re \left\{ \sum_{\nu=0}^{k} e^{i\nu t} \right\} \right] |e^{i\frac{t}{2}}| \\
&\leq \frac{1}{2^{n+1}} t \sum_{k=0}^{n} \left[ \binom{n}{k} \frac{1}{1+k} Re \left\{ \sum_{\nu=0}^{k} e^{i\nu t} \right\} \right] \\
&\leq \frac{1}{2^{n+1}} t \sum_{k=0}^{\tau-1} \left[ \binom{n}{k} \frac{1}{1+k} Re \left\{ \sum_{\nu=0}^{k} e^{i\nu t} \right\} \right] \\
&+ \frac{1}{2^{n+1}} t \sum_{k=\tau}^{n} \left[ \binom{n}{k} \frac{1}{1+k} Re \left\{ \sum_{\nu=0}^{k} e^{i\nu t} \right\} \right] \quad (3.1)
\end{align*}
\]

Now considering first term of (3.1),
\[
\begin{align*}
&\frac{1}{2^{n+1}} t \sum_{k=0}^{\tau-1} \left[ \binom{n}{k} \frac{1}{1+k} Re \left\{ \sum_{\nu=0}^{k} e^{i\nu t} \right\} \right] \\
&\leq \frac{1}{2^{n+1}} t \sum_{k=0}^{\tau-1} \left[ \binom{n}{k} \frac{1}{1+k} \left\{ \sum_{\nu=0}^{k} 1 \right\} \right] |e^{i\nu t}| \\
&\leq \frac{1}{2^{n+1}} t \sum_{k=0}^{\tau-1} \left[ \binom{n}{k} \right] \quad (3.2)
\end{align*}
\]

Now considering second term of (3.1) and using Abel’s lemma,
\[
\begin{align*}
&\frac{1}{2^{n+1}} t \sum_{k=\tau}^{n} \left[ \binom{n}{k} \frac{1}{1+k} Re \left\{ \sum_{\nu=0}^{k} e^{i\nu t} \right\} \right] \\
&\leq \frac{1}{2^{n+1}} t \sum_{k=\tau}^{n} \left[ \binom{n}{k} \frac{1}{1+k} \max_{0 \leq m \leq k} \left| \sum_{\nu=0}^{k} e^{i\nu t} \right| \right] \\
&\leq \frac{1}{2^{n+1}} t \sum_{k=\tau}^{n} \left[ \binom{n}{k} \frac{1}{1+k} (1+k) \right] \\
&= \frac{1}{2^{n+1}} t \sum_{k=\tau}^{n} \left[ \binom{n}{k} \right] \quad (3.3)
\end{align*}
\]

Combining (3.1), (3.2) and (3.3), we get
\[
|\tilde{K}_n(t)| \leq \frac{1}{2^{n+1}} t \sum_{k=0}^{\tau-1} \left[ \binom{n}{k} \right] + \frac{1}{2^{n+1}} t \sum_{k=\tau}^{n} \left[ \binom{n}{k} \right]
\]
4. Proofs of Theorems

Proof of Theorem 1. Following Titchmarsh [9] and using Riemann-Lebesgue theorem, \( s_n(f; x) \) the series (1.4) is given by

\[
s_n(f; x) - f(x) = \frac{1}{2\pi} \int_0^\pi \phi(t) \frac{\sin \left( n + \frac{1}{2} \right) t}{\sin \frac{t}{2}} dt
\]

Therefore using (1.1) the \((C, 1)\) transform \( C_1^n \) of \( s_n(f; x) \) is given by

\[
C_1^n - f(x) = \frac{1}{2\pi} \frac{1}{n+1} \int_0^\pi \phi(t) \sum_{k=0}^n \sin \left( k + \frac{1}{2} \right) t \sin \frac{t}{2} dt
\]

Now denoting \((E, 1)\) \((C, 1)\) transform of \( s_n(f; x) \) by \((EC)_1^n\), we write

\[
(EC)_1^n - f(x) = \frac{1}{2^{n+1}} \sum_{k=0}^n \binom{n}{k} \int_0^\pi \phi(t) \left( \frac{1}{k+1} \right) \left\{ \sum_{\nu=0}^k \sin \left( \nu + \frac{1}{2} \right) t \right\} dt
\]

In order to prove the theorem, we have to show that, under our assumptions

\[
\int_0^\pi \phi(t) \ K_n(t) dt = O(1) \text{ as } n \to \infty
\]

For \( 0 < \delta < \pi \), we have

\[
\int_0^\pi \phi(t) \ K_n(t) dt = \left[ \int_0^{\frac{\delta}{n+1}} + \int_{\frac{\delta}{n+1}}^{\delta} + \int_{\delta}^\pi \right] \phi(t) \ K_n(t) dt
\]

\[
= I_{1.1} + I_{1.2} + I_{1.3} \text{ (say)} \quad (4.1)
\]

We consider,

\[
|I_{1.1}| \leq \int_0^{\frac{\delta}{n+1}} |\phi(t)||K_n(t)| dt
\]

\[
= O(n + 1) \left[ \int_0^{\frac{\delta}{n+1}} |\phi(t)| dt \right] \quad \text{(using Lemma 1)}
\]
Now we consider, 

\[ |I_{1,2}| \leq \int_{\frac{1}{n+1}}^{\delta} |\phi(t)| |K_n(t)| \, dt \]

\[ = O \left[ \int_{\frac{1}{n+1}}^{\delta} |\phi(t)| \left( \frac{1}{t} \right) \, dt \right] \quad \text{(using Lemma 2)} \]

\[ = O \left[ \left\{ \frac{1}{t} \Phi(t) \right\}^{\delta}_{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\delta} \frac{1}{t^2} \Phi(t) \, dt \right] \]

\[ = O \left[ o \left( \frac{1}{\alpha(t) P_\tau} \right)_{\frac{1}{n+1}}^{\delta} + \int_{\frac{1}{n+1}}^{\delta} o \left( \frac{1}{t \alpha \left( \frac{1}{t} \right) P_\tau} \right) \, dt \right] \quad \text{by (2.1)} \]

\[ = O \left[ o \left( \frac{1}{\alpha(n+1) P_{n+1}} \right)_{\frac{1}{n+1}}^{\delta} + \int_{\frac{1}{n+1}}^{n+1} o \left( \frac{1}{u \alpha(u) P_u} \right) \, du \right] \]

\[ = o \left\{ \frac{1}{\alpha(n+1) P_{n+1}} \right\} + o \left\{ \frac{1}{(n+1) \alpha(n+1) P_{n+1}} \right\} \int_{\frac{1}{n+1}}^{n+1} 1 \, du \]

\[ = o \left\{ \frac{1}{\log (n+1)} \right\} + o \left\{ \frac{1}{\log (n+1)} \right\} \]

\[ = o(1) + o(1) \quad \text{as } n \to \infty \quad \text{by (2.2)} \]

\[ = o(1) \quad \text{as } n \to \infty \quad \text{(4.3)} \]

Now by Riemann-Lebesgue theorem and by regularity condition of the method of summability, We have

\[ |I_{1,3}| \leq \int_{\delta}^{\pi} |\phi(t)| \, |K_n(t)| \, dt \]

\[ = o(1), \quad \text{as } n \to \infty \quad \text{(4.4)} \]

Combining (4.1) to (4.4), we get

\[ (EC)_{n}^{1} f(x) = o(1) \quad \text{as } n \to \infty \]
This completes the proof of Theorem 1.

Proof of Theorem 2. Let \( \bar{s}_n(f; x) \) denotes the partial sum of series (1.5). Then following Lal [4] and using Riemann-Lebesgue theorem \( \bar{s}_n(f; x) \) of (1.5) is given by

\[
\bar{s}_n(f; x) = \frac{1}{2\pi} \int_0^\pi \psi(t) \cos\left(\frac{n+\frac{1}{2}}{2}\right) t \sin\left(\frac{t}{2}\right) dt
\]

Therefore, using (1.5) the \((C, 1)\) transform \(C_n^1\) of \(\bar{s}_n(f; x)\) is given by

\[
\bar{C}_n^1 - \bar{f}(x) = \frac{1}{2\pi (n+1)} \int_0^\pi \psi(t) \sum_{k=0}^n \cos\left(\frac{k+\frac{1}{2}}{2}\right) t \sin\left(\frac{t}{2}\right) dt
\]

Now denoting \((E, 1)(C, 1)\) transform of \(\bar{s}_n\) by \(N_pE_n^q\), we write

\[
(\text{EC})_n^1 - \bar{f}(x) = \frac{1}{2n+1} \sum_{k=0}^n \left( \binom{n}{k} \int_0^\pi \psi(t) \left( \frac{1}{k+1} \right) \left\{ \sum_{\nu=0}^k \cos\left(\nu + \frac{1}{2}\right) t \right\} dt \right)
\]

\[
= \int_0^\pi \psi(t) \bar{K}_n(t) dt
\]

In order to prove the theorem, we have to show that, under our assumptions

\[
\int_0^\pi \psi(t) \bar{K}_n(t) dt = o(1) \text{ as } n \to \infty
\]

For \(0 < \delta < \pi\), we have

\[
\int_0^\pi \psi(t) \bar{K}_n(t) dt = \left[ \int_0^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\delta} + \int_{\delta}^\pi \right] \psi(t) \bar{K}_n(t) dt
\]

\[
= I_{2.1} + I_{2.2} + I_{2.3} \text{ (say)} \quad (4.5)
\]

Now consider,

\[
|I_{2.1}| = \int_0^{\frac{1}{n+1}} |\psi(t)| \left| \bar{K}_n(t) \right| dt
\]

\[
= O \left[ \int_0^{\frac{1}{n+1}} \frac{1}{t} |\psi(t)| dt \right] \quad (\text{using Lemma 3})
\]

\[
= O(n+1) \left[ \int_0^{\frac{1}{n+1}} |\psi(t)| dt \right]
\]
\[
= O(n + 1) \left[ o \left\{ \frac{1}{(n + 1) \alpha(n + 1) P_{n+1}} \right\} \right] \text{ by (2.3)}
\]

\[
= o \left\{ \frac{1}{\alpha(n + 1) P_{n+1}} \right\}
\]

\[
= o \left\{ \frac{1}{\log(n + 1)} \right\} \text{ using (2.2)}
\]

\[
= o(1) \text{ as } n \to \infty
\] (4.6)

Now we consider,

\[
|I_{2.2}| = \int_{\frac{1}{n+1}}^{\delta} |\psi(t)| \left| \hat{K}_n(t) \right| dt
\] (4.7)

\[
= O \left[ \int_{\frac{1}{n+1}}^{\delta} |\psi(t)| \left( \frac{1}{t} \right) dt \right] \text{ (using Lemma 4)}
\]

\[
= O \left[ o \left\{ \frac{1}{\alpha(t) \tau} \right\} \frac{1}{n+1} + \int_{\frac{1}{n+1}}^{\delta} o \left( \frac{1}{t \alpha \left( \frac{1}{t} \right) \tau} \right) dt \right] \text{ by (2.3)}
\]

\[
= O \left[ o \left\{ \frac{1}{\alpha(n + 1) P_{n+1}} \right\} \frac{1}{n+1} + \int_{\frac{1}{n+1}}^{\delta} o \left( \frac{1}{u \alpha(u) P_u} \right) du \right]
\]

\[
= o \left\{ \frac{1}{\alpha(n + 1) P_{n+1}} \right\} + o \left\{ \frac{1}{(n + 1) \alpha(n + 1) P_{n+1}} \right\} \int_{\frac{1}{n+1}}^{\delta} 1.du
\]

\[
= o \left\{ \frac{1}{\log(n + 1)} \right\} + o \left\{ \frac{1}{\log(n + 1)} \right\}
\]

\[
= o(1) + o(1) \text{ as } n \to \infty \text{ by (2.2)}
\]

\[
= o(1) \text{ as } n \to \infty
\] (4.8)

Now by Riemann- Lebesgue theorem and by regularity condition of the method of summability, We have

\[
|I_{2.3}| \leq \int_{\delta}^{\pi} |\psi(t)| \left| \hat{K}_n(t) \right| dt
\]

\[
= o(1) \text{ as } n \to \infty
\] (4.9)
Combining (4.5) to (4.9), we get

\[(EC)^{1}_n - \bar{f}(x) = o(1) \text{ as } n \to \infty\]

This completes the proof of theorem 2.

Acknowledgments

First author is thankful to his parents for their encouragement and support to this work.

References


