ON KROPINA CHANGE
OF TWO-DIMENSIONAL FINSLER SPACES

V.K. Chaubey1,2, T.N. Pandey2, Sanjay K. Tripathi3

1,2Department of Mathematics and Statistics
D.D.U. Gorakhpur University
Gorakhpur (U.P.), 273009, INDIA

3Department of Mathematics
Almora Campus
Kumaun University
Almora, Nainital (Uttaranchal), INDIA

Abstract: The purpose of the present paper is to obtained the relationship between the main scalars, geodesic and scalar curvature among two-dimensional Finsler spaces F^2 and a Finsler space F^*2 due to Kropina change.

AMS Subject Classification: 53B40, 53C60
Key Words: two-dimensional Finsler spaces, Kropina spaces, main scalar, scalar curvature, geodesic

1. Introduction

Let (M^n, L) be an n-dimensional Finsler space on a differentiable manifold M^n, equipped with the fundamental function $L(x, y)$. In 1971, Matsumoto [1] introduced the transformation of Finsler metric:

$$L'(x, y) = L(x, y) + \beta(x, y)$$

where, $\beta(x, y) = b_i(x)y^i$, $b_i(x)$ are components of a covariant vector which is a function of position alone. If $L(x, y)$ is a metric function of Riemannian...
space then $L'(x, y)$ reduces to the metric function of Randers space. Such a Finsler metric was first introduced by G. Randers [2] from the standpoint of general theory of relativity and applied to the theory of electron microscope by R. S. Ingarden [3], who first named it as Randers space. The geometrical property of this space has been studied by various authors [4, 5, 6, 7, 8]. In 1978, Numata [9] has studied the properties of (M^n, L') which is obtained from Minkowskian space (M^n, L) by the transformation (1). In 1984, Shibata [10] has studied the properties of Finsler space (M^n, L^*) whose metric function $L^*(x, y)$ is obtained from $L(x, y)$ by the relation $L^*(x, y) = f(L, \beta)$ where f is positively homogeneous of degree one in L and β. This change of metric function is called a β-change. The change (1) is a particular case of β-change called Randers change.

Another particular β-change of Finsler metric function is a Kropina change of metric function given by

$$
L^*(x, y) = \frac{L^2(x, y)}{\beta(x, y)}
$$

If $L(x, y)$ reduces to the metric function of Riemannian space then $L^*(x, y)$ reduces to the metric function of Kropina space [11]. Due to this reason the transformation (2) has been called the Kropina change of Finsler metric.

2. The Finsler Space (M^n, L^*)

Let (M^n, L) be a given Finsler space and let $b_i(x) y^i$ be a one form on M^n. We shall define on M^n a function $L^*(x, y) 0$ by the equation,

$$
L^*(x, y) = \frac{L^2(x, y)}{\beta(x, y)}
$$

where, we put $\beta(x, y) = b_i(x) y^i$.

To find the metric tensor g_{ij}^*, the angular metric tensor h_{ij}^*, the Cartan tensor C_{ijk}^*, and the v-curvature tensor of (M^n, L^*) [12], we use the following results,

$$
\dot{\partial}_l \beta = b_l, \quad \dot{\partial}_l L = l_l, \quad \dot{\partial}_l l_l = L^{-1} h_{ij}
$$

where, $\dot{\partial}_l$ stands for partial derivative with respect to y^i and h_{ij} are components of angular metric tensor of (M^n, L) given by $h_{ij} = g_{ij} - l_l l_j = L \dot{\partial}_i \dot{\partial}_j L$. The successive differentiation of (3) with respect to y^i and y^j gives,

$$
l_{ij}^* = \frac{2L}{\beta} l_l + \frac{L^2}{\beta^2} b_i
$$
\[
h^*_ij = \frac{2L^2}{\beta^2} h_{ij} + \frac{2L^2}{\beta^2} l_i l_j + \frac{2L^3}{\beta^3} (l_i b_j + l_j b_i) + \frac{2L^4}{\beta^4} b_i b_j \tag{6}
\]

From (5) and (6) we get the following relation between metric tensors of \((M^n, L)\) and \((M^n, L^*)\),

\[
g^*_ij = \frac{2L^2}{\beta^2} g_{ij} + \frac{4L^2}{\beta^2} l_i l_j + \frac{4L^3}{\beta^3} (l_i b_j + l_j b_i) + \frac{3L^4}{\beta^4} b_i b_j \tag{7}
\]

The contravariant component of the metric tensor of \((M^n, L^*)\) will be derived from (7) as follows,

\[
g^{*ij} = \frac{\beta^2}{2L^2} g^{ij} + \frac{\beta^2}{L^2} (1 - \frac{2\beta^2}{L^2} b^i b^j) l^i l^j - \frac{\beta^2}{2L^2 b^2} b^i b^j + \frac{\beta^3}{L^3 b^2} (l^i b^j + l^j b^i) \tag{8}
\]

where, we put \(b^2 = g^{ij} b_i b_j, b^i = g^{ij} b_j, l^i = g^{ij} l_j\). Differentiating (7) with respect to \(y^k\) and using (4), we get the following relation between the Cartan tensors of \((M^n, L)\) and \((M^n, L^*)\)

\[
C^*_{ijk} = \frac{2L^2}{\beta^2} C_{ijk} - \frac{2L^2}{\beta^2} (h_{ij} d_k + h_{jk} d_i + h_{ki} d_j) - \frac{6L^4}{\beta^5} d_i d_j d_k \tag{9}
\]

where, \(d_i = b_i - \frac{\beta}{L} l_i\). It is to be noted that,

\[
d_i l^i = 0, \quad d_i b^i = b^2 - \frac{\beta^2}{L^2}, \quad h_{ij} l^j = 0, \quad h_{ij} d^i = h_{ij} b^i = d_i \tag{10}
\]

where, \(d^i = g^{ij} d_j = b^i - \frac{\beta}{L} l^i\).

To find \(C^*_{jk} = g^{*in} C^*_{ijn}\), we use (8), (9) and (10), we have,

\[
C^*_{jk} = C^*_{ik} - \beta^{-1} (h^1_{ik} d_k + h^1_k d_i + h^1_{jk}) - 3L^2 \beta^{-3} d_j d_k d^i - b^{-2} C_{jke^i} + (3L^2 \beta^{-3} - \beta^{-1} b^{-2}) d_j d_k e^i + (\beta^{-1} - \beta L^{-2} b^{-2}) h_{jke} e^i \tag{11}
\]

where, \(e^i = b^i - 2\beta L^{-1} l^i = d^i - \beta L^{-1} l^i\) and \(C_{jk} = C_{ijk} b^i\).

Throughout this paper we use the symbol ‘\(^\prime\)’ to denote the contraction with \(b^i\).

Proposition 1. Let \(F^{*n} = (M^n, L^*)\) be an \(n\)-dimensional Finsler space obtained from the Kropina change of the Finsler space \(F^n = (M^n, L)\), then their normalized supporting element \(l^*_i\), angular metric tensor \(h^*_ij\), fundamental metric tensor \(g^*_ij\) and \((h)hv\)-torsion tensor \(C^*_ijk\) is given by (5), (6), (7) and (9) respectively.
3. Kropina Change of Main Scalar

The \((h)hv\)-torsion tensor for a two-dimensional Finsler space \(F^2\) is given by,

\[
LC_{ijk} = I_{im}m_jm_k
\]

(12)

where, \(I = C_{222}\) is the main scalar \([13]\) in \(F^2\).

Similarly, the \((h)hv\)-torsion tensor for a two-dimensional Finsler space \(F^{*2}\) is given by,

\[
L^*C^*_{ijk} = I^*_{im}m^*_jm^*_k
\]

(13)

where, \(I^*\) is the main scalar \([13]\) in \(F^{*2}\), and \(m^*_i\) is unit vector orthogonal to \(l^*_i\) in two-dimensional Finsler space.

Putting, \(i = k\) in equation in (11), we get

\[
C^*_i = C_i - \beta^{-1}(n + 1)d_i - b^{-2}C_{..i}
\]

(14)

The normalized torsion vector \(m^i = \frac{C^i}{C}, \) in \(F^2\) and \(m^*i = \frac{C^*i}{C^*}\) in \(F^{*2}\) is the length of \(C^i\) and \(C^*i\) respectively.

The equation (14) can also be written

\[
m^*_i = \lambda m_i + \mu d_i + \phi C_{..i}
\]

(15)

where, \(\lambda = \frac{C}{C^*}, \ \mu = \frac{-(n+1)\beta^{-1}}{C^*}, \ \text{and} \ \phi = \frac{-b^{-2}}{C^*}.\) since,

\[
C^{*2} = g^{*ij}C^*_iC^*_j = \frac{\beta^2}{2L^2}C^2 - \frac{\beta^2}{2L^2b^2}B^2 - \beta^{-1}(n + 1)[\frac{\beta^2}{L^2}D - \frac{\beta^2}{L^2b^2}B(\frac{b^2}{L^2})] - \frac{n + 1}{2L^2b^2}(b^2 - \frac{\beta^2}{L^2})^2 + \beta^{-1}(n + 1)b^{-2}[\frac{\beta^2}{L^2}H - \frac{\beta^2}{L^2b^2}(b^2 - \frac{\beta^2}{L^2})C_{..i}] + \frac{b^{-4}\beta^2}{2L^2}J - \frac{\beta^2}{L^2b^2}b^{-2}C^2
\]

(16)

where, \(B = b\delta C_i, \ \ D = g^{ij}C_jd_j = g^{ij}C_jd_i, \ \ E = g^{ij}C_{..j} = g^{ij}C_{..i}C_j, \ \ F = g^{ij}d_id_j, \ \ H = g^{ij}d_iC_{..j} = g^{ij}C_{..i}d_j, \ \ J = g^{ij}C_{..i}C_{..j}\) are an scalars.

The contravariant component of \(l^{*i}\) and \(m^{*i}\) is given by

\[
l^{*i} = \frac{g^{*ij}l^j}{L} = \frac{\beta}{L}l^i
\]

(17)
where, \(l^i_i = 1 \).
Again,
\[
m^*i = g^{*ij}m^*_j = Mm^i + Nb^i + Pdi + Qd^i + SC^i
\]
(18)
where, \(M = \frac{\lambda\beta^2}{2L^2}, \ N = -(\frac{\lambda\beta^2}{2L^2}K + \frac{\mu\beta^2}{L^2}b^i + \frac{\phi\beta^2}{L^2}C_{...}), \ P = \frac{\lambda\beta^2}{L^2}b^i, \ b^im_i = K \) is an certain scalar.

Proposition 2. Let \(F^* = (M^*, L^*) \) be an n-dimensional Finsler space obtained from the Kropina change of the Finsler space \(F^n = (M^n, L) \), then contravariant and covariant components of the Berwald frame \((l, m)\) in two-dimensional Finsler space is given by (17), (18), (5) and (15) respectively.

Proposition 3. Let \(F^* = (M^*, L^*) \) be an n-dimensional Finsler space obtained from the Kropina change of the Finsler space \(F^n = (M^n, L) \), then the relationship between the length of the components \(C_i \) and \(C_i^* \) is given by (16).

Since, the (h)hv-torsion tensor given by (9) can be rewritten as in two-dimensional as follows:
\[
I^*m^*_im^*_j = \frac{2L^2}{\beta^2}Im_i m_j m_k - \frac{6L^2}{\beta^3}b_2 m_i m_j m_k + \frac{2L}{\beta^2}(m^i m_j l_k + \frac{6L^4}{\beta^3}b_2 m_i m_j m_k - \frac{6L^2}{\beta^3}b_2 (l_i m_j k + l_k m_j i + l_k m_i j) + \frac{6L^3}{\beta^4}b_2 (l_i m_j k + l_k m_j i + l_k m_i j) + \frac{6L^4}{\beta^5}b_2 l_i m_j k)
\]
(19)
where, \(h_{ij} = m_i m_j \) and \(b_i = b_1 l_i + b_2 m_i \), then \(b_i b^i = 0 \implies b_1 = 0 \). So, \(b_i = b_2 m_i \), \(b_1 \) and \(b_2 \) are certain scalars.

From equation (15) and (19), we have
\[
I^*(\lambda + \mu b_2 + \phi K^2)^3 m_i m_j m_k = \frac{2L^2}{\beta^2}I m_i m_j m_k - \frac{6L^2}{\beta^3}b_2 m_i m_j m_k + \frac{2L}{\beta^2}(m^i m_j l_k + \frac{6L^4}{\beta^3}b_2 m_i m_j m_k - \frac{6L^2}{\beta^3}b_2 (l_i m_j k + l_k m_j i + l_k m_i j) + \frac{6L^3}{\beta^4}b_2 (l_i m_j k + l_k m_j i + l_k m_i j) + \frac{6L^4}{\beta^5}b_2 l_i m_j k)
\]
(20)
Contracting (20) by \(m_i m_j m_k \), we have,
\[
(\lambda + \mu b_2 + \phi K^2)^3 I^* = \frac{2L^2}{\beta^2}I - \frac{6L^2}{\beta^3}b_2
\]
(21)
Theorem 1. Let $F^\ast n = (M^n, L^\ast)$ be an n-dimensional Finsler space obtained from the Kropina change of the Finsler space $F^n = (M^n, L)$, then the relationship between the main scalar I^\ast and I of the Finsler space is given by (21).

4. Kropina Change of Geodesic

Let us consider s be the arc-length, then the equations of a geodesic [14] of $F^n = (M^n, L)$ is written in the well-known from,

$$\frac{d^2 x^i}{ds^2} + 2G^i(x, \frac{dx}{ds}) = 0 \tag{22}$$

where, functions $G^i(x, y)$ are given by

$$2G^i = g^{ir}(y^j \partial_r \partial_j F - \partial_r F), \quad F = \frac{L^2}{2}$$

Now, suppose s^\ast be the arc-length in the Finsler space $F^\ast n = (M^n, L^\ast)$, then the equations of a geodesic can be written as,

$$\frac{d^2 x^i}{ds^\ast^2} + 2G^\ast i(x, \frac{dx}{ds^\ast}) = 0 \tag{23}$$

where, functions $G^\ast i(x, y)$ are given by

$$2G^\ast i = g^{\ast ir}(y^j \partial_r \partial_j F^\ast - \partial_r F^\ast), \quad F^\ast = \frac{L^\ast 2}{2}$$

Since, $ds^\ast = L^\ast(x, dx)$, this is also be written as,

$$ds^\ast = \frac{L^2(x,y)}{\beta(x,y)} = \frac{ds^2}{b_i dx^i}$$

Since, $ds= L(x, dx)$

Thus we have,

$$\frac{dx^i}{ds} = \frac{dx^i}{ds^\ast} \frac{2ds}{\beta} - \frac{ds^2}{\beta^2 b_i dx^i} \tag{24}$$

Differentiating (24) with respect to ds, we have,

$$\frac{d^2 x^i}{ds^2} = \frac{d^2 x^i}{ds^\ast^2} \frac{2ds}{\beta} - \frac{ds^2}{\beta^2 b_i dx^i} + \frac{dx^i}{ds^\ast} \frac{2ds}{\beta} - \frac{2ds}{\beta^2 b_i dx^i} - \frac{(ds^2 b_i dx^i)^2}{(ds)^2}$$

$$- \frac{ds}{\beta} (\frac{2ds}{\beta} - \frac{2(ds)^2}{\beta^3} b_i dx^i) \tag{25}$$
ON KROPINA CHANGE...

Since, \(2G_{*i} = g^*_{ir}(y^j \partial_r \partial_j \frac{L^2}{2} - \partial_r \frac{L^2}{2})\)

Then,

\[
G_{*i} = \frac{2L^2}{\beta^2} G_i + y^j \left[\frac{2L^2}{\beta} \left(\frac{l_i}{L^2 b^2} \right) \partial_j L - \frac{L^4}{\beta^3} \partial_i \partial_j \beta - \right]
\]

\[
\frac{2L^3}{\beta^2} l_i \partial_j \beta + \frac{2L^4}{\beta^4} b_i \partial_j \beta + \frac{2L^3}{\beta^3} l_i \partial_j \beta - \frac{2L^3}{\beta^3} b_i \partial_j L + \frac{L^4}{\beta^3} \partial_j \beta
\]

Now, we have

\[
G^*_{*i} = g^*_{*ir} G^*_{r} = G^i + \frac{2L^2}{\beta^2} G_r \left[\frac{\beta^3}{L^3 b^2} (l^i b^r + l^r b^i) \right] + \left[\frac{\beta^2}{L^2 b^2} L^2 \partial^r \frac{L^2}{b^2} \right] - \frac{2L^2}{\beta^2} b^i b^r + \frac{\beta^2}{L^3 b^2} \left(l^i b^r + l^r b^i \right) + \frac{\beta^2}{L^2} (1 - \frac{2\beta^2}{L^2 b^2}) L^2 \partial^r \frac{L^2}{b^2} \right] + \frac{\beta^3}{L^2 b^2} \left(l^i b^r + l^r b^i \right)
\]

\[
\frac{\beta^2}{\beta^3} \left(\frac{L^2}{\beta^2} \right) \partial_i \partial_j L - \frac{L^4}{\beta^3} \partial_i \partial_j \beta - \frac{2L^3}{\beta^2} l_i \partial_j \beta + \frac{2L^3}{\beta^2} b_i \partial_j \beta + \frac{2L^3}{\beta^3} l_i \partial_j \beta - \frac{2L^3}{\beta^3} b_i \partial_j L + \frac{L^4}{\beta^3} \partial_j \beta
\]

Proposition 4. Let \(F^*n = (M^n, L^*)\) be an n-dimensional Finsler space obtained from the Kropina change of the Finsler space \(F^n = (M^n, L)\), then the relationship between the Berwald connection function \(G^*_{*i}\) and \(G^i\) is given by (27).

Proposition 5. Let \(F^*n = (M^n, L^*)\) be an n-dimensional Finsler space obtained from the Kropina change of the Finsler space \(F^n = (M^n, L)\), then the relationship between the arc-length \(s^*\) and \(s\) is given by (24).

Theorem 2. Let \(F^*n = (M^n, L^*)\) be an n-dimensional Finsler space obtained from the Kropina change of the Finsler space \(F^n = (M^n, L)\), then the equation of geodesic is given by (23) where \(\frac{d^2 x^i}{ds^2}\) and \(G^*_{*i}\) is given by (25) and (27) respectively.

5. Kropina Change of Scalar Curvature

The (v)h-torsion tensor \(R^i_{jk}\) in two-dimensional Finsler space may be written as,

\[
R^i_{jk} = LR^i (l_j m_k - l_k m_j)
\]
where, R is the h-scalar curvature.

Again, the (v)h-torsion tensor R^{*i}_{jk} in Finsler space F^{*2} is,

$$R^{*i}_{jk} = L^i R^* m^* (l^*_j m^*_k - l^*_k m^*_j) \tag{29}$$

The equation (29) can also be written as,

$$\frac{R^{*i}_{jk}}{R^*} = L^i m^* (l^*_j m^*_k - l^*_k m^*_j)$$

In view of (3), (5), (15) and (17), we have,

$$\frac{R^{*i}_{jk}}{R^*} = 2 L^2 \lambda \beta^2 M M^i (l^*_j m^*_k - l^*_k m^*_j) + 2 L^3 \lambda \beta^2 (Nb^i + Pl^i + Qd^i + SC^i (l^*_j m^*_k - l^*_k m^*_j) + \frac{L^2}{\beta} (MM^i + Nb^i + Pl^i + Qd^i + SC^i [\frac{2L^2}{\beta} (l^*_j d_k - l^*_k d_j) + \frac{2L^2}{\beta} (l^*_j C..k - l^*_k C..j) - \frac{L^2}{\beta^2} (b^*_j m^*_k - b^*_k m^*_j) - \frac{L^2}{\beta^2} (b^*_j C..k - b^*_k C..j)])]$$

Using (28) in (30), we have,

$$\frac{R^{*i}_{jk}}{R^*} = 2 L^2 \lambda \beta^2 M R^i j k R^* + 2 L^3 \lambda \beta^2 (Nb^i + Pl^i + Qd^i + SC^i (l^*_j m^*_k - l^*_k m^*_j) + \frac{L^2}{\beta} (MM^i + Nb^i + Pl^i + Qd^i + SC^i [\frac{2L^2}{\beta} (l^*_j d_k - l^*_k d_j) + \frac{2L^2}{\beta} (l^*_j C..k - l^*_k C..j) - \frac{L^2}{\beta^2} (b^*_j m^*_k - b^*_k m^*_j) - \frac{L^2}{\beta^2} (b^*_j C..k - b^*_k C..j)])]$$

Theorem 3. Let $F^{*n} = (M^n, L^*)$ be an n-dimensional Finsler space obtained from the Kropina change of the Finsler space $F^n = (M^n, L)$, then the relationship between (v)h-torsion tensor and scalar curvature is given by (31).

Acknowledgments

Author is very much thankful to NBHM-DAE of INDIA for their financial assistance as a Postdoctoral Fellowship.
References

