PRIME GAMMA-NEAR-RINGS WITH \((\sigma, \tau)\)-DERIVATIONS

Isamiddin S. Rakhimov\(^1\) \(^\S\), Kalyan Kumar Dey\(^2\), Akhil Chandra Paul\(^3\)

\(^1\)Department of Mathematics, FS
and
Institute for Mathematical Research (INSPEM)
Universiti Putra Malaysia
MALAYSIA

\(^2\)Department of Mathematics
Rajshahi University
Rajshahi-6205, BANGLADESH

\(^3\)Department of Mathematics
Rajshahi University
Rajshahi-6205, BANGLADESH

Abstract: Let \(N\) be a 2 torsion free prime \(\Gamma\)-near-ring with center \(Z(N)\) and let \(d\) be a nontrivial derivation on \(N\) such that \(d(N) \subseteq Z(N)\). Then we prove that \(N\) is commutative. Also we prove that if \(d\) be a nonzero \((\sigma, \tau)\)-derivation on \(N\) such that \(d(N)\) commutes with an element \(a\) of \(N\) then either \(d\) is trivial or \(a\) is in \(Z(N)\). Finally if \(d_1\) be a nonzero \((\sigma, \tau)\)-derivation and \(d_2\) be a nonzero derivation on \(N\) such that \(d_1\tau = \tau d_1\), \(d_1\sigma = \sigma d_1\), \(d_2\tau = \tau d_2\), \(d_2\sigma = \sigma d_2\) with \(d_1(N)\Gamma \sigma(d_2(N)) = \tau(d_2(N))\Gamma d_1(N)\) then \(N\) is a commutative \(\Gamma\)-ring.

AMS Subject Classification: 16Y30, 19W25, 16U80
Key Words: ring, prime ring, derivation

1. Introduction

Bell and Mason [3] initiated the study of derivations in near-rings. The derivation in \(\Gamma\)-near-rings was first introduced by Cho and Jun [6]. They studied some
basic properties of prime Γ-near-rings. Ozturk and Jun in [14] discussed prime
Γ-near-rings with derivations. They obtained commutativity properties on
prime Γ-near-rings. Later Asci [1] studied Γ-near-rings with \((\sigma,\tau)\)-derivations
and obtained some commutativity results. The commutativity properties of
prime Γ-near-rings with derivations also have been investigated by Uckun, Ozturk and Jun [18]. Golbasi [10] obtained analogue of Posner’s Theorem from
[17]. The commutativity conditions of prime Γ-near-rings with generalized
derivations have been studied in [7] (also see [8]). The paper [9] has dealt with
generalized derivations in semiprime gamma-rings.

In this paper we consider the prime Γ-near-rings with derivations to subject
of commutativity conditions. The characterizations of prime Γ-near-rings with
composition of two derivations are obtained. We also investigate conditions for
prime Γ-near-ring to be commutative.

Organization of the paper is as follows. Sections 2 and 3 contain brief
review and definitions which will be used further. Some of these results have
been presented by others researchers (for example, see [1]). Main results are
in Sections 3 and 4. The results of Section 3 concern derivations in Γ-rings
(Theorem 3.6), whereas Section 4 deals with \((\sigma,\tau)\)-derivations in prime Γ-near-
rings (Theorems 4.2 – 4.7).

2. Preliminaries

A Γ-near-ring is a triple \((N, +, \Gamma)\), where:

(i) \((N, +)\) is a group (not necessarily abelian),

(ii) \(\Gamma\) is a non-empty set of binary operations on \(N\) such that for each \(\alpha \in \Gamma\),
 \((N, +, \alpha)\) is a left near-ring.

(iii) \(a\alpha(b\beta c) = (a\alpha b)\beta c\), for all \(a, b, c \in N\) and \(\alpha, \beta \in \Gamma\).

Throughout this paper, \(N\) stands for a zero-symmetric left Γ-near-ring with
multiplicative center \(Z(N)\). Recall that a Γ-near-ring \(N\) is prime if \(a\Gamma N\Gamma b = \{\)
\(0\} \) implies that \(a = 0\) or \(b = 0\). Let \(\sigma\) and \(\tau\) be two Γ-near-ring automorphisms
of \(N\). For \(a, b \in N\) and \(\alpha \in \Gamma\), \([a, b]_\alpha\),

\([a, b]^{(\sigma,\tau)}_\alpha\) and \((a, b)\) will denote the commutator \(a\alpha b - b\alpha a, a\alpha\sigma(b) - \tau(b)\alpha a\)
and \(a + b - a - b\) respectively. An additive mapping \(d: N \to N\) is called
a derivation if \(d(a\alpha b) = a\alpha d(b) + d(a)\alpha b\) holds for all \(a, b \in N, \alpha \in \Gamma\). An
additive mapping \(d: N \to N\) is called a \((\sigma, \tau)\)-derivation if \(d(a\alpha b) = \sigma(a)\alpha d(b) +
d(a)\alpha\tau(b)\) holds for all \(a, b \in N, \alpha \in \Gamma\). In particular \([a, b]^{(1,1)}_\alpha = [a, b]_\alpha\).
3. Properties of Γ Rings with Derivations

Lemma 3.1. Let d be an arbitrary additive endomorphism of N. Then
\[d(a\alpha b) = a\alpha d(b) + d(a)\alpha b, \] for all $a, b \in N, \alpha \in \Gamma$
if and only if
\[d(a\alpha b) = d(a)\alpha b + a\alpha d(b), \] for all $a, b \in N, \alpha \in \Gamma$.

Proof. Suppose $d(a\alpha b) = a\alpha d(b) + d(a)\alpha b$ for all $a, b \in N, \alpha \in \Gamma$. Since
\[a\alpha(b + b) = a\alpha b + a\alpha b, \]
d$(a\alpha(b + b)) = a\alpha d(b + b) + d(a)\alpha(b + b) = a\alpha d(b) + a\alpha d(b) + d(a)\alpha b + d(a)\alpha b$
d and
\[d(a\alpha b + a\alpha b) = d(a\alpha b) + d(a\alpha b) = a\alpha d(b) + d(a)\alpha b + a\alpha d(b) + d(a)\alpha b. \]
Then, we obtain
\[a\alpha d(b) + d(a)\alpha b = d(a)\alpha b + a\alpha d(b), \]
so $d(a\alpha b) = d(a)\alpha b + a\alpha d(b)$, for all $a, b \in N, \alpha \in \Gamma$.
The converse part is proved similarly.

Lemma 3.2. Suppose that d is a derivation on N. Then N satisfies the following right distributive laws:

(i) $(a\alpha d(b) + a\alpha d(b))\beta c = a\alpha d(b)\beta c + d(a)\alpha b\beta c$,

(ii) $(d(a)\alpha b + a\alpha d(b))\beta c = d(a)\alpha b\beta c + a\alpha d(b)\beta c$ for every $a, b, c \in N$ and $\alpha, \beta \in \Gamma$.

Proof. (i) Consider
\[d((a\alpha b)\beta c) = a\alpha b\beta d(c) + d(a\alpha b)\beta c = a\alpha b\beta d(c) + (a\alpha d(b) + d(a)\alpha b)\beta c, \]
for all $a, b, c \in N$ and $\alpha, \beta \in \Gamma$, and
\[d(a\alpha(b\beta c)) = a\alpha d(b\beta c) + d(a)\alpha b\beta c = a\alpha(b\beta d(c) + d(b)\beta c) + d(a)\alpha b\beta c \]
\[= a\alpha b\beta d(c) + a\alpha d(b)\beta c + d(a)\alpha b\beta c \]
for all $a, b, c \in N$ and $\alpha, \beta \in \Gamma$.

From the above two relations we obtain

\[(a\alpha d(b) + d(a)\alpha b)\beta c = a\alpha d(b)\beta c + d(a)\alpha b\beta c,\]

for all \(a, b, c \in N\) and \(\alpha, \beta \in \Gamma\).

(ii) Due to Lemma 3.1 we have,

\[d((a\alpha b)\beta c) = d(a\alpha b)\beta c + a\alpha b\beta d(c) = (d(a)\alpha b + a\alpha d(b))\beta c + a\alpha b\beta d(c),\]

for \(a, b, c \in N, \alpha, \beta \in \Gamma\), and

\[d(a\alpha(b\beta c)) = d(a)\alpha b\beta c + a\alpha d(b)\beta c = d(a)\alpha b\beta c + a\alpha (d(b)\beta c + b\alpha d(c)) = d(a)\alpha b\beta c + a\alpha d(b)\beta c + a\alpha b\beta d(c),\]

for every \(a, b, c \in N\) and \(\alpha, \beta \in \Gamma\).

These two relations imply that

\[(d(a)\alpha b + a\alpha d(b))\beta c = d(a)\alpha b\beta c + a\alpha d(b)\beta c,\]

for all \(a, b, c \in N\) and \(\alpha, \beta \in \Gamma\).

Lemma 3.3. Let \(d\) be a derivation on a \(\Gamma\)-near-ring \(N\) and let \(u\) be not a left zero divisor in \(N\). If \([u, d(u)]_\alpha = 0\) for every \(\alpha \in \Gamma\), then \((a, u)\) is a constant for every \(a \in N\).

Proof. From \(u\alpha(u + a) = u\alpha u + u\alpha a\), for all \(x \in N, \alpha \in \Gamma\), we get

\[d(u\alpha(u + a)) = u\alpha d(u + a) + d(u)\alpha(u + a) = u\alpha d(u) + u\alpha d(a) + d(u)\alpha u + d(u)\alpha a = u\alpha d(u) + u\alpha d(a) + u\alpha d(u) + a\alpha d(u)\]

and

\[d(u\alpha u + u\alpha a) = d(u\alpha u) + d(u\alpha a) = u\alpha d(u) + d(u)\alpha u + u\alpha d(a) + d(u)\alpha a\]

which gives

\[u\alpha d(a) + d(u)\alpha u - d(u)\alpha u - u\alpha d(a) = 0,\]

for all \(\alpha \in \Gamma\). Since \(d(u)\alpha u = u\alpha d(u), \alpha \in \Gamma\).

This equation can be written as

\[u\alpha (d(a) + d(u) - d(a) - d(u)) = u\alpha d(a + u - a - u) = u\alpha d((a, u)) = 0.\]
Thus $d((a, u)) = 0$. Hence (a, u) is constant. This completes the proof.

Lemma 3.4. Let d be a (σ, τ)-derivation on a N and $a \in N$. Then

$$(\tau(a)\sigma d(b) + d(a)\sigma(b))\tau(c) = \tau(a)\sigma d(b)\tau(c) + d(a)\sigma(b)\tau(c),$$

for $a, b, c \in N, \alpha, \beta \in \Gamma$.

Proof. Consider

$$d((a\alpha b)\beta c) = \tau(a\alpha b)\beta d(c) + d(a\alpha b)\beta\tau(c)$$

$$= \tau(a)\alpha\tau(b)\beta d(c) + (\tau(a)\sigma d(b) + d(a)\sigma(b))\beta\tau(c),$$

for all $a, b, c \in N, \alpha, \beta \in \Gamma$, and

$$d(a\alpha(b\beta c)) = \tau(a)\alpha d(b\beta c) + d(a)\alpha\sigma(b\beta c)$$

$$= \tau(a)\alpha\tau(b)\beta d(c) + (\tau(a)\sigma d(b) + d(a)\sigma(b))\beta\tau(c) + d(a)\alpha\sigma(b)\beta\tau(c),$$

for all $a, b, c \in N, \alpha, \beta \in \Gamma$.

Since $d((a\alpha b)\beta c) = d(a\alpha(b\beta c))$, we have

$$(\tau(a)\alpha d(b) + d(a)\alpha\sigma(b))\beta\tau(c) = \tau(a)\alpha d(b)\beta\tau(c) + d(a)\alpha\sigma(b)\beta\tau(c),$$

for all $a, b, c \in N, \alpha, \beta \in \Gamma$.

This completes the proof.

Lemma 3.5. Suppose that N is a prime Γ-near-ring.

(i) any nonzero element of the center of N is not zero divisor.

(ii) If there exist a nonzero element of $Z(N)$ such that $a + a \in Z(N)$, then $(N, +)$ is commutative.

(iii) If $d \neq 0$ be a derivation on N. Then $a\Gamma d(N) = \{0\}$ implies $a = 0$, and $d(N)\Gamma a = \{0\}$ implies $a = 0$.

(iv) Let N be 2-torsion free and d be a derivation on N with $d^2 = 0$. Then $d = 0$.

Proof. (i) If $a \in Z(N) - \{0\}$ and $a\alpha b = 0$, $b \in N, \alpha \in \Gamma$, then $a\alpha c\beta b = 0$, $b, c \in N, \alpha \in \Gamma$. Therefore we have, $a\Gamma N\Gamma b = 0$. Since N is prime and $a \neq 0$ then $b = 0$.

(ii) Let $a \in Z(N) - \{0\}$ be an element such that $a + a \in Z(N)$ and let $b, c \in N, \alpha \in \Gamma$. By the distributivity of N we get $(b + c)\alpha(a + a) = b\alpha(a + a) + c\alpha(a + a) = b\alpha a + b\alpha a + c\alpha a + c\alpha a = a\alpha b + a\alpha b + a\alpha c + a\alpha c = a\alpha(b + b + c + c)$.

PRIME GAMMA-NEAR-RINGS WITH (σ, τ)-DERIVATIONS 673
Next, since \(a + a \in Z(N) \) then
\[(b+c)\alpha(a+a) = (b+c)\alpha a + (b+c)\alpha a = a\alpha(b+ c) + a\alpha(b+ c) = a\alpha(b+ c + b + c).
\]
Taking into account the last two we have, \(b + b + c + c = b + c + b + c \) and so \(b + c = c + b \). Hence \((N, +) \) is commutative.

(iii) Let \(a\Gamma d(N) = \{ 0 \} \), \(b, c \in N \) and \(\alpha, \beta \in \Gamma \). Then \(0 = a\alpha d(b\beta c) = a\alpha b\beta d(c) + a\alpha d(b)\beta c = a\alpha b\beta d(c) \). Thus \(a\Gamma\mathcal{N}d(N) = \{ 0 \} \), by using the primeness of \(N \) and \(d(N) \neq 0 \) we get \(a = 0 \).

The part (iii) can be proved similarly.

(iv) Note that for any \(a, b \in N, \alpha \in \Gamma \), \(0 = d^2(a\alpha b) = d(a\alpha d(b) + d(a)\alpha b) = a\alpha d^2(b) + d(a)\alpha d(b) + d(a)d(\alpha b) + d^2(a)\alpha b \). Therefore we have \(2d(a)\alpha d(b) = 0 \), for all \(a, b \in N, \alpha \in \Gamma \). Since \(N \) is 2-torsion free we get \(d(a)\alpha d(b) = 0 \), for each \(a \in N, \alpha \in \Gamma \). By using (iii) we obtain \(d = 0 \).

Theorem 3.6. Let \(N \) be a prime \(\Gamma \)-near-ring and let \(d \) be a nontrivial derivations on \(N \) such that \(d(N) \subseteq Z(N) \). Then \((N, +) \) is commutative. Moreover if \(N \) is 2-torsion free, then \(N \) is a commutative \(\Gamma \)-ring.

Proof. Let \(a \) be a non-constant and \(c \) be a constant elements of \(N \). Then \(d(a\alpha c) = a\alpha d(c) + d(a)\alpha c = d(a)\alpha c \in Z(N), \alpha \in \Gamma \). Since \(d(a) \in Z(N) - \{ 0 \} \), it follows easily that \(c \in Z(N) \). Note that if \(c \) is a constant so \(c + c \) is a constant. It follows from lemma 3.5(ii) that \((N, +) \) is commutative, provided that there exists a nonzero constant. Let us provide the last.

Suppose, that 0 is the only constant. Since \(d \) is obviously commuting, it follows from the lemma 3.3 that all \(u \) which are not zero divisors belong to by \(Z(N) \). In particular, if \(a \neq 0 \), \(d(a) \in Z(N) \). But then for all \(b \in N \), \(d(b) + d(a) - d(b) - d(a) = d((b, a)) = 0 \), hence \((b, a) = 0 \).

Now, we assume that \(N \) is 2-torsion free. By Lemma 3.1,
\[(a\alpha d(b) + d(a)\alpha b)\beta c = a\alpha d(b)\beta c + d(a)\alpha b\beta c\]
for all \(a, b, c \in N, \alpha, \beta \in \Gamma \), and using the fact that \(d(a\alpha b) \in Z, \alpha \in \Gamma \), we get \(c\alpha d(b) + c\alpha d(\alpha b)\beta c = a\alpha d(b)\beta c + a\alpha d(b)\beta c, \alpha, \beta \in \Gamma \). Since \((N, +) \) is commutative and \(d(N) \subseteq Z(N) \), we obtain \(d(b)\alpha[c, a]_\beta = d(a)\alpha[b, c]_\beta \) for all \(a, b, c \in N, \alpha, \beta \in \Gamma \).

Suppose now that \(N \) is not commutative. Choosing \(b, c \in N \), with \([b, c]_\beta \neq 0, \beta \in \Gamma \), and letting \(u = d(a) \), we get \(d^2(a)\alpha[b, c]_\beta = 0 \), for all \(a \in N, \alpha, \beta \in \Gamma \), and since the central elements \(d^2(a) \) cannot be a nonzero divisor of zero, we conclude that \(d^2(a) = 0 \) for all \(a \in N \). By lemma 3.5(iv), this is not true for nontrivial \(d \).
4. \(\Gamma \)-Near-Rings with \((\sigma, \tau)\)-Derivations

Lemma 4.1. Suppose that \(N \) is a prime \(\Gamma \)-near-ring with a nonzero \((\sigma, \tau)\)-derivation \(d \) and \(a \in N \). If at least one of the following (i) \(d(N)\Gamma\sigma(a) \) or (ii) \(a\Gamma d(N) \) is zero then \(a = 0 \).

Proof. (i) Consider

\[
0 = d(b\beta c)\alpha\sigma(a) = (\tau(b)\beta d(c) + d(b)\beta\sigma(c))\alpha\sigma(a) = \tau(b)\beta d(c)\alpha\sigma(a) + d(b)\beta\sigma(c)\alpha\sigma(a),
\]

for all \(a, b, c \in N, \alpha, \beta \in \Gamma \).

Since \(d(c)\alpha\sigma(a) = 0 \), we have \(d(b)\beta\sigma(c)\alpha\sigma(a) = 0 \), i.e., \(d(b)\Gamma\Gamma\sigma\sigma(a) = 0 \). (Bearing in mind that \(\sigma \) is an automorphism). Since \(d \neq 0 \) and \(N \) is prime, we get \(\sigma(a) = 0 \) which gives \(a = 0 \).

The proof of (ii) is similar.

Theorem 4.2. Suppose that \(d \) is a nonzero \((\sigma, \tau)\)-derivation of a prime \(\Gamma \)-near-ring \(N \) and \(a \in N, \alpha \in \Gamma \). Let \([d(N), a]^{(\sigma, \tau)} = 0\), then \(d(a) = 0 \) or \(a \in Z(N) \).

Proof. Note that for all \(b \in N \) and \(\alpha \in \Gamma, a\alpha b \in N \). Therefore, from \([d(N), a]^{(\sigma, \tau)} = 0\) we have, \(d(a\alpha b)\beta\sigma(a) = \tau(a)\beta d(a\alpha b) \) for \(\beta \in \Gamma \).

Hence

\[
(\tau(a)\alpha d(b) + d(a)\alpha\sigma(b))\beta\sigma(a) = \tau(a)\beta(\tau(a)\alpha d(b) + d(a)\alpha\sigma(b)).
\]

Then by Lemma 3.4, we have

\[
\tau(a)\alpha d(b)\beta\sigma(a) + d(a)\alpha\sigma(b)\beta\sigma(a) = \tau(a)\beta\tau(a)\alpha d(b) + \tau(a)\beta d(a)\alpha\sigma(b).
\]

Due to the condition of the theorem, we have

\[
\tau(a)\alpha\tau(a)\beta d(b) + d(a)\alpha\sigma(b)\beta\sigma(a) = \tau(a)\beta\tau(a)\alpha d(b) + d(a)\alpha\sigma(a)\beta\sigma(b),
\]

that is

\[
d(a)\alpha\sigma([b, a]_{\beta}) = 0 \tag{1}
\]

for all \(b \in N, \alpha, \beta \in \Gamma \).

Substituting \(b\delta c, (c \in N, \delta \in \Gamma) \) for \(a \) in (1), we have \(d(a)\alpha\sigma(b)\beta\sigma([c, a]_{\alpha}) = 0 \) for all \(b, c \in N, \alpha, \beta, \delta \in \Gamma \). Since \(\sigma \) is automorphism we get \(d(a) = 0 \) or \(a \in Z(N) \). This completes the proof.
Lemma 4.3. Suppose that \(N \) is a prime \(\Gamma \)-near-ring and \(d_1 \) is a nonzero \((\sigma, \tau)\)-derivation and \(d_2 \) is a derivation of \(N \) such that

\[
d_1(a)\Gamma \sigma(d_2(b)) + \tau(d_2(a))\Gamma d_1(b) = 0
\]

for all \(a, b \in N \). Then \((N, +)\) is commutative.

Proof. Consider \(d_1(a)\Gamma \sigma(d_2(b)) + \tau(d_2(a))\Gamma d_1(b) = 0 \) for all \(\alpha \in \Gamma \). Replacing \(b \) by \(u + v \) we have,

\[
0 = d_1(a)\alpha \sigma(d_2(u + v)) + \tau(d_2(a))\alpha d_1(u + v)
\]

\[
= d_1(a)\alpha \sigma(d_2(u)) + d_1(a)\alpha \sigma(d_2(v)) + \tau(d_2(a))\alpha d_1(u) + \tau(d_2(a))\alpha d_1(v),
\]

for \(u, v \in N, \alpha \in \Gamma \).

Using the condition of the lemma, we get

\[
0 = d_1(a)\alpha \sigma(d_2(u)) + d_1(a)\alpha \sigma(d_2(v)) - d_1(a)\alpha \sigma(d_2(u)) - d_1(a)\alpha \sigma(d_2(v)).
\]

As result we get,

\[
d_1(a)\alpha \sigma(d_2(u, v)) = 0
\]

for all \(a, u, v \in N, \alpha \in \Gamma \).

By Lemma 4.1(i), we obtain that \(d_2(u, v) = 0 \) for all \(u, v \in N \). Note that for any \(w \in N \), we have \(d_2(\omega u, \omega v) = 0 \). Using (2), we obtain that \(d_2(\omega \alpha(u, v)) = 0 \). This yields \(d_2(\omega \alpha(u, v)) = 0 \), for all \(w, u, v \in N, \alpha \in \Gamma \). By Lemma 3.5(iii), we get \((u, v) = 0 \), for all \(u, v \in N \).

Theorem 4.4. Let \(N \) be a prime \(\Gamma \)-near-ring with \(2N \neq \{0\} \), \(d_1 \) be a \((\sigma, \tau)\)-derivation and \(d_2 \) be a derivation such that \(d_1 \tau = \tau d_1, d_1 \sigma = \sigma d_1, d_2 \tau = \tau d_2 \) and \(d_2 \sigma = \sigma d_2 \). If \(d_1(a)\Gamma \sigma(d_2(b)) + \tau(d_2(a))\Gamma d_1(b) = 0 \) for all \(a, b \in N \), then either \(d_1 = 0 \) or \(d_2 = 0 \).

Proof. Let \(d_1 \neq 0 \) and \(d_2 \neq 0 \). According to Lemma 4.3 we know that \((N, +)\) is commutative. Now, for all \(u, v \in N \) we take \(a = u \beta v \) in \(d_1(a)\Gamma \sigma(d_2(b)) + \tau(d_2(a))\Gamma d_1(b) = 0 \) to obtain

\[
0 = d_1(u \beta v)\alpha \sigma(d_2(b)) + \tau(d_2(u \beta v))\alpha d_1(b)
\]

\[
= (\tau(u)\beta d_1(v) + d_1(u)\beta \sigma(v))\alpha \sigma(d_2(b)) + \tau(u) \beta d_2(v) + d_2(u) \beta v) \alpha d_1(b).
\]

Using the left distributive law, we get,

\[
0 = \tau(u) \beta d_1(v)\alpha \sigma(d_2(b)) + d_1(u) \beta \sigma(v)\alpha \sigma(d_2(b)) + \tau(u) \beta \tau(d_2(v)) \alpha \sigma d_1(b)
\]
for all \(u, v, b \in N, \alpha, \beta \in \Gamma \).

Hence,

\[
0 = \tau(u)\beta(d_1(v)\alpha\sigma(d_2(b) + \tau(d_2(v))\alpha d_1(b)) + d_1(u)\beta\sigma(v)\alpha\sigma(d_2(b)) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(b).
\]

Now due to the condition of the theorem, we obtain

\[
d_1(u)\beta\sigma(v)\alpha\sigma(d_2(b)) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(b) = 0, \tag{3}
\]

for all \(b, u, v \in N, \alpha, \beta \in \Gamma \).

Replacing \(b \) by \(b\delta t \), \(t \in N, \delta \in \Gamma \), in (3) we have

\[
0 = d_1(u)\alpha\beta\sigma(v)\alpha\sigma(d_2(b\delta t)) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(b\delta t)
= d_1(u)\beta\sigma(v)\alpha\sigma(d_2(t)) + d_1(u)\beta\sigma(v)\alpha\sigma(d_2(b))\delta\sigma(t)
+ d_2(\tau(u))\beta\sigma(v)\alpha\sigma(y)\delta d_1(t) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(b)\delta\sigma(t)
= d_1(u)\beta\sigma(v)\alpha\sigma(d_2(t)) + d_2(\tau(u))\beta\sigma(v)\alpha\sigma(d_2(b))\delta\sigma(t)
+ d_1(u)\beta\sigma(v)\alpha\sigma(d_2(b))\delta\sigma(t) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(b)\delta\sigma(t).
\]

Using (3) we again obtain,

\[
d_1(u)\beta\sigma(v)\beta\sigma(d_2(b))\beta\sigma(t) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(b)\delta\sigma(t) = 0, \tag{4}
\]

for all \(u, v, b, t \in N, \alpha, \beta, \delta \in \Gamma \).

Substituting \(d_1(t) \) for \(t \) in (4), we get

\[
d_1(u)\alpha\sigma(v)\beta\sigma(d_2(b))\delta\sigma(d_1(t)) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(b)\delta\sigma(d_1(t)) = 0 \tag{5}
\]

for all \(u, v, b, t \in N, \alpha, \beta, \delta \in \Gamma \).

Now if we take \(\tau(b) \) instead of \(y \) in (5), we have,

\[
d_1(u)\alpha\sigma(v)\beta\sigma(d_2(\tau(b)))\delta\sigma(d_1(t)) + d_2(\tau(u))\beta\sigma(v)\alpha d_1(\tau(b))\delta\sigma(d_1(t)) = 0, \tag{6}
\]

for all \(u, v, b, t \in N, \alpha, \beta, \delta \in \Gamma \).

Substituting \(v \) and \(b \) in (3) by \(v\gamma d_1(b) \) and \(\sigma(t) \) respectively, we obtain

\[
d_1(u)\alpha\sigma(v)\beta\sigma(d_1(y))\delta\sigma(d_2(\sigma(t))) + d_2(\tau(u))\beta\sigma(v)\delta\sigma(d_1(y))\gamma d_1(\sigma(t)) = 0, \tag{7}
\]

for all \(u, v, b, t \in N, \alpha, \beta \in \Gamma \).
Now, if we subtract (6) from (7) and make use $d_1\sigma = \sigma d_1$, $d_1\tau = \tau d_1$, then
\[d_1(u)\alpha \sigma (v) \delta (d_1(\sigma(y)))\beta \sigma (d_2(\sigma(t))) - \sigma (d_2(\tau(y)))\beta \sigma (d_1(t)) = 0. \]

Therefore,
\[d_1(N)\Gamma \sigma (d_1(b))\Gamma d_2(\sigma(t)) - d_2(\tau(b))\beta d_1(t) = 0, \tag{8} \]
for all $t, b \in N$.

Since N is a prime Γ-near-ring and $d_1 \neq 0$ we conclude that,
\[d_1(b)\alpha d_2(\sigma(t)) - d_2(\tau(b))\beta d_1(t) = 0. \]

Using $d_2\sigma = \sigma d_2$ and the hypothesis, we get
\[d_1(b)\beta \sigma (d_2(t) + d_2(t)) = 0, \tag{9} \]
for all $b, t \in N$.

Due to Lemma 4.1(i) and $d_1 \neq 0$ we get, $d_2(t) + d_2(t) = 0$, for all $t \in N$. Hence $0 = d_2(s\alpha t) + d_2(s\alpha t) = d_2(s)\alpha (t + t)$ for all $s, t \in N, \alpha \in \Gamma$, and so $d_2(N)\alpha (t + t) = 0$, for all $t \in N$. If we apply Lemma 3.5(iii), we get $t + t = 0$ for all $t \in N$, which contradicts that $2N \neq \{0\}$.

This completes the proof.

Theorem 4.5. Let N be a prime Γ-near-ring with $2N \neq \{0\}$, d_1 be a (σ, τ)-derivation and d_2 be a derivation such that $d_1\tau = \tau d_1$, $d_1\sigma = \sigma d_1$, $d_2\tau = \tau d_2$ and $d_2\sigma = \sigma d_2$.(i) If $d_1(a)\Gamma \sigma (d_2(b)) + \tau (d_2(a))\Gamma d_1(b) = 0$ for all $a, b \in N$, then either $d_1 = 0$ or $d_2 = 0$.(ii) If d_1d_2 acts as a (σ, τ)-derivation on N, then either $d_1 = 0$ or $d_2 = 0$.

Proof. Consider
\[d_2d_1(a\sigma b) = \tau (a)\alpha d_2d_1(b) + d_2d_1(a)\alpha \sigma (b), \]
and
\[d_2d_1(a\sigma b) = d_2(\tau (a))\alpha d_1(b) + \tau (a)\alpha d_2d_1(b) + d_2d_1(a)\alpha \sigma (b) + d_1(a)\alpha d_2(\sigma(b)). \]

These two expressions give $\tau (d_2(a))\alpha d_1(b) + d_1(a)\alpha \sigma (d_2(b)) = 0$, for all $a, b \in N$. Now due to Theorem 4.4, we get $d_1 = 0$ or $d_2 = 0$.

Theorem 4.6. Let N be a prime Γ-near-ring with a nonzero (σ, τ)-derivation d such that $d(a\sigma b) = d(b\alpha a)$ for all $a, b \in N, \alpha \in \Gamma$, then N is a commutative Γ-near-ring.
Proof. Let us consider
\[\tau(a)\alpha d(b) + d(a)\alpha \sigma(b) = \tau(b)\alpha d(a) + d(b)\alpha \sigma(a),\] (10)
for all \(a, b \in N,\ \alpha \in \Gamma.\)

We substitute \(b\beta a\) for \(a\) in (10) and obtain
\[\tau(b)\beta \tau(a)\alpha d(b) + d(b)\beta a\alpha \sigma(b) = \tau(b)\beta d(b\alpha a) + d(b)\alpha \tau(b)\alpha \sigma(a).\]

By the partial distributive law for \(a, b \in N,\ \alpha, \beta \in \Gamma\) and using \(d(b\alpha a) = d(a\alpha b)\) we get
\[\tau(b)\beta \tau(a)\alpha d(b) + \tau(b)\beta d(a)\alpha \sigma(b) + d(b)\alpha \sigma(a)\beta \sigma(b)\]
\[= \tau(b)\beta \tau(a)\alpha d(b) + \tau(b)\beta d(a)\alpha \sigma(b) + d(b)\alpha \sigma(b)\beta \sigma(a).\]

Therefore,
\[d(b)\alpha \sigma(a)\beta \sigma(b) = d(b)\alpha \sigma(b)\beta \sigma(a),\] (11)
for all \(a, b \in N,\ \alpha, \beta \in \Gamma.\)

Replacing \(a\) by \(a\delta c,\ c \in N\) in the last equality we get
\[d(b)\beta \sigma(a)\beta \sigma(c)\beta \sigma(b) = d(b)\alpha \sigma(b)\alpha \sigma(a)\alpha \sigma(c) = d(b)\alpha \sigma(a)\beta \sigma(b)\alpha \sigma(c)\]
and so \(d(b)\Gamma \sigma([c, b]_\alpha) = 0,\ \text{for all} a, c \in N,\ \alpha, \beta \in \Gamma.\)

By the primeness of \(N,\) we obtain \(d(b) = 0\) or \(b \in Z(N).\) Since \(d\) is a nonzero \((\sigma, \tau)\)-derivation on \(N,\) we have \(b \in Z(N).\) So, \(N\) is a commutative \(\Gamma\)-near-ring.

Theorem 4.7. Let \(N\) be a prime 2-torsion free \(\Gamma\)-near-ring and \(d_1\) be a nonzero \((\sigma, \tau)\)-derivation, \(d_2\) a nonzero derivation on \(N\) such that \(d_1\tau = \tau d_1, d_1\sigma = \sigma d_1, d_2\tau = \tau d_2\) and \(d_2\sigma = \sigma d_2.\) If \(d_1(a)\Gamma \sigma(d_2(b)) = \tau(d_2(a))\Gamma d_1(b)\) for all \(a, b \in N,\) then \(N\) is a commutative \(\Gamma\)-ring.

Proof. Consider \([d_1(a), d_2(b)]^{(\sigma, \tau)}_{\alpha} = 0,\ \text{for all} a, b \in N,\ \alpha \in \Gamma.\)

Applying Theorem 3.6, we obtain that \(d_1d_2(N) = 0\) or \(d_2(N) \subset Z(N).\) Since \(d_1\) and \(d_2\) are nonzero derivations, we have \(d_2(N) \subset Z(N).\) Now according to Theorem 4.2 we get the commutativity of \(N.\)

Acknowledgments

The second named author thanks the Institute for Mathematical Research (IN-SPEM), UPM, Malaysia for the hospitality during that this paper has been written.

The research was supported by FRGS grant 01-12-10978FR MOHE, Malaysia.
References

